线性和非线性双曲型方程的反问题

M. Lassas
{"title":"线性和非线性双曲型方程的反问题","authors":"M. Lassas","doi":"10.1142/9789813272880_0199","DOIUrl":null,"url":null,"abstract":"We consider inverse problems for hyperbolic equations and systems and the solutions of these problems based on the focusing of waves. Several inverse problems for linear equations can be solved using control theory. When the coefficients of the modelling equation are unknown, the construction of the point sources requires solving blind control problems. For non-linear equations we consider a new artificial point source method that applies the non-linear interaction of waves to create microlocal points sources inside the unknown medium. The novel feature of this method is that it utilizes the non-linearity as a tool in imaging, instead of considering it as a difficult perturbation of the system. To demonstrate the method, we consider the non-linear wave equation and the coupled Einstein and scalar field equations.","PeriodicalId":318252,"journal":{"name":"Proceedings of the International Congress of Mathematicians (ICM 2018)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"INVERSE PROBLEMS FOR LINEAR AND NON-LINEAR HYPERBOLIC EQUATIONS\",\"authors\":\"M. Lassas\",\"doi\":\"10.1142/9789813272880_0199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider inverse problems for hyperbolic equations and systems and the solutions of these problems based on the focusing of waves. Several inverse problems for linear equations can be solved using control theory. When the coefficients of the modelling equation are unknown, the construction of the point sources requires solving blind control problems. For non-linear equations we consider a new artificial point source method that applies the non-linear interaction of waves to create microlocal points sources inside the unknown medium. The novel feature of this method is that it utilizes the non-linearity as a tool in imaging, instead of considering it as a difficult perturbation of the system. To demonstrate the method, we consider the non-linear wave equation and the coupled Einstein and scalar field equations.\",\"PeriodicalId\":318252,\"journal\":{\"name\":\"Proceedings of the International Congress of Mathematicians (ICM 2018)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Congress of Mathematicians (ICM 2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789813272880_0199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Congress of Mathematicians (ICM 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789813272880_0199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

研究了双曲型方程和系统的反问题及其基于波聚焦的解。一些线性方程的逆问题可以用控制理论求解。当建模方程的系数未知时,点源的构造需要解决盲控制问题。对于非线性方程,我们考虑了一种新的人工点源方法,该方法利用波的非线性相互作用在未知介质中产生微局部点源。该方法的新颖之处在于它利用非线性作为成像的工具,而不是将其视为系统的困难摄动。为了证明该方法,我们考虑了非线性波动方程和耦合的爱因斯坦场和标量场方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INVERSE PROBLEMS FOR LINEAR AND NON-LINEAR HYPERBOLIC EQUATIONS
We consider inverse problems for hyperbolic equations and systems and the solutions of these problems based on the focusing of waves. Several inverse problems for linear equations can be solved using control theory. When the coefficients of the modelling equation are unknown, the construction of the point sources requires solving blind control problems. For non-linear equations we consider a new artificial point source method that applies the non-linear interaction of waves to create microlocal points sources inside the unknown medium. The novel feature of this method is that it utilizes the non-linearity as a tool in imaging, instead of considering it as a difficult perturbation of the system. To demonstrate the method, we consider the non-linear wave equation and the coupled Einstein and scalar field equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信