基于粒子群优化和分布式并行方法的蛋白质结构预测

BADS '11 Pub Date : 2011-06-14 DOI:10.1145/1998570.1998579
Ivan Kondov, R. Berlich
{"title":"基于粒子群优化和分布式并行方法的蛋白质结构预测","authors":"Ivan Kondov, R. Berlich","doi":"10.1145/1998570.1998579","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) is a powerful technique for computer aided prediction of proteins' three-dimensional structure. In this work, employing an all-atom force field we demonstrate the efficiency of the standard PSO algorithm, as implemented in the ArFlock library, for finding the folded state of two proteins of different sizes starting from completely extended conformations. In particular, the predicted structure of the larger protein is in good agreement with the structure from the Protein Data Bank within the experimental resolution. We also show that parallelization of the PSO speeds up the simulation linearly with the number of workers and reduces the time for predictions dramatically without loss of accuracy.","PeriodicalId":340028,"journal":{"name":"BADS '11","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Protein structure prediction using particle swarm optimization and a distributed parallel approach\",\"authors\":\"Ivan Kondov, R. Berlich\",\"doi\":\"10.1145/1998570.1998579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle swarm optimization (PSO) is a powerful technique for computer aided prediction of proteins' three-dimensional structure. In this work, employing an all-atom force field we demonstrate the efficiency of the standard PSO algorithm, as implemented in the ArFlock library, for finding the folded state of two proteins of different sizes starting from completely extended conformations. In particular, the predicted structure of the larger protein is in good agreement with the structure from the Protein Data Bank within the experimental resolution. We also show that parallelization of the PSO speeds up the simulation linearly with the number of workers and reduces the time for predictions dramatically without loss of accuracy.\",\"PeriodicalId\":340028,\"journal\":{\"name\":\"BADS '11\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BADS '11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1998570.1998579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BADS '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1998570.1998579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

粒子群优化(PSO)是计算机辅助预测蛋白质三维结构的一种强有力的技术。在这项工作中,我们利用一个全原子力场证明了标准粒子群算法的效率,正如在ArFlock库中实现的那样,从完全扩展的构象开始寻找两个不同大小的蛋白质的折叠状态。特别是,在实验分辨率范围内,较大蛋白质的预测结构与蛋白质数据库的结构吻合良好。我们还表明,PSO的并行化随着工作人员的数量线性加快了仿真速度,并在不损失精度的情况下显着减少了预测时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protein structure prediction using particle swarm optimization and a distributed parallel approach
Particle swarm optimization (PSO) is a powerful technique for computer aided prediction of proteins' three-dimensional structure. In this work, employing an all-atom force field we demonstrate the efficiency of the standard PSO algorithm, as implemented in the ArFlock library, for finding the folded state of two proteins of different sizes starting from completely extended conformations. In particular, the predicted structure of the larger protein is in good agreement with the structure from the Protein Data Bank within the experimental resolution. We also show that parallelization of the PSO speeds up the simulation linearly with the number of workers and reduces the time for predictions dramatically without loss of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信