基于集成学习的低资源语言维吾尔语情感分析

Azragul Yusup Azragul Yusup, Degang Chen Azragul Yusup, Yifei Ge Degang Chen, Hongliang Mao Yifei Ge, Nujian Wang Hongliang Mao
{"title":"基于集成学习的低资源语言维吾尔语情感分析","authors":"Azragul Yusup Azragul Yusup, Degang Chen Azragul Yusup, Yifei Ge Degang Chen, Hongliang Mao Yifei Ge, Nujian Wang Hongliang Mao","doi":"10.53106/160792642023072404018","DOIUrl":null,"url":null,"abstract":"\n To address the problem of scarce low-resource sentiment analysis corpus nowadays, this paper proposes a sentence-level sentiment analysis resource conversion method HTL based on the syntactic-semantic knowledge of the low-resource language Uyghur to convert high-resource corpus to low-resource corpus. In the conversion process, a k-fold cross-filtering method is proposed to reduce the distortion of data samples, which is used to select high-quality samples for conversion; finally, the Uyghur sentiment analysis dataset USD is constructed; the Baseline of this dataset is verified under the LSTM model, and the accuracy and F1 values reach 81.07% and 81.13%, respectively, which can provide a reference for the construction of low-resource language corpus nowadays. The accuracy and F1 values reached 81.07% and 81.13%, respectively, which can provide a reference for the construction of today’s low-resource corpus. Meanwhile, this paper also proposes a sentiment analysis model based on logistic regression ensemble learning, SA-LREL, which combines the advantages of several lightweight network models such as TextCNN, RNN, and RCNN as the base model, and the meta-model is constructed using logistic regression functions for ensemble, and the accuracy and F1 values reach 82.17% and 81.86% respectively in the test set, and the experimental results show that the method can effectively improve the performance of Uyghur sentiment analysis task.\n \n","PeriodicalId":442331,"journal":{"name":"網際網路技術學刊","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resource Construction and Ensemble Learning based Sentiment Analysis for the Low-resource Language Uyghur\",\"authors\":\"Azragul Yusup Azragul Yusup, Degang Chen Azragul Yusup, Yifei Ge Degang Chen, Hongliang Mao Yifei Ge, Nujian Wang Hongliang Mao\",\"doi\":\"10.53106/160792642023072404018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n To address the problem of scarce low-resource sentiment analysis corpus nowadays, this paper proposes a sentence-level sentiment analysis resource conversion method HTL based on the syntactic-semantic knowledge of the low-resource language Uyghur to convert high-resource corpus to low-resource corpus. In the conversion process, a k-fold cross-filtering method is proposed to reduce the distortion of data samples, which is used to select high-quality samples for conversion; finally, the Uyghur sentiment analysis dataset USD is constructed; the Baseline of this dataset is verified under the LSTM model, and the accuracy and F1 values reach 81.07% and 81.13%, respectively, which can provide a reference for the construction of low-resource language corpus nowadays. The accuracy and F1 values reached 81.07% and 81.13%, respectively, which can provide a reference for the construction of today’s low-resource corpus. Meanwhile, this paper also proposes a sentiment analysis model based on logistic regression ensemble learning, SA-LREL, which combines the advantages of several lightweight network models such as TextCNN, RNN, and RCNN as the base model, and the meta-model is constructed using logistic regression functions for ensemble, and the accuracy and F1 values reach 82.17% and 81.86% respectively in the test set, and the experimental results show that the method can effectively improve the performance of Uyghur sentiment analysis task.\\n \\n\",\"PeriodicalId\":442331,\"journal\":{\"name\":\"網際網路技術學刊\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"網際網路技術學刊\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53106/160792642023072404018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"網際網路技術學刊","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/160792642023072404018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对当前低资源情感分析语料库稀缺的问题,本文提出了一种基于低资源语言维吾尔语的句法语义知识的句子级情感分析资源转换方法html,实现高资源语料库向低资源语料库的转换。在转换过程中,提出了k-fold交叉滤波方法,以减少数据样本的失真,选择高质量的样本进行转换;最后,构建维吾尔语情感分析数据集USD;在LSTM模型下对该数据集的Baseline进行了验证,准确率和F1值分别达到81.07%和81.13%,可为当前低资源语言语料库的构建提供参考。准确率和F1值分别达到81.07%和81.13%,可为当今低资源语料库的构建提供参考。同时,本文还提出了一种基于逻辑回归集成学习的情感分析模型SA-LREL,该模型结合了TextCNN、RNN、RCNN等几种轻量级网络模型的优点作为基模型,并使用逻辑回归函数进行集成构建元模型,测试集的准确率和F1值分别达到82.17%和81.86%。实验结果表明,该方法可以有效地提高维吾尔语情感分析任务的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource Construction and Ensemble Learning based Sentiment Analysis for the Low-resource Language Uyghur
To address the problem of scarce low-resource sentiment analysis corpus nowadays, this paper proposes a sentence-level sentiment analysis resource conversion method HTL based on the syntactic-semantic knowledge of the low-resource language Uyghur to convert high-resource corpus to low-resource corpus. In the conversion process, a k-fold cross-filtering method is proposed to reduce the distortion of data samples, which is used to select high-quality samples for conversion; finally, the Uyghur sentiment analysis dataset USD is constructed; the Baseline of this dataset is verified under the LSTM model, and the accuracy and F1 values reach 81.07% and 81.13%, respectively, which can provide a reference for the construction of low-resource language corpus nowadays. The accuracy and F1 values reached 81.07% and 81.13%, respectively, which can provide a reference for the construction of today’s low-resource corpus. Meanwhile, this paper also proposes a sentiment analysis model based on logistic regression ensemble learning, SA-LREL, which combines the advantages of several lightweight network models such as TextCNN, RNN, and RCNN as the base model, and the meta-model is constructed using logistic regression functions for ensemble, and the accuracy and F1 values reach 82.17% and 81.86% respectively in the test set, and the experimental results show that the method can effectively improve the performance of Uyghur sentiment analysis task.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信