回归和语义分割的现实预测

Krishna Chaitanya Gadepally, S. Dhal, Stavros Kalafatis, K. Nowka
{"title":"回归和语义分割的现实预测","authors":"Krishna Chaitanya Gadepally, S. Dhal, Stavros Kalafatis, K. Nowka","doi":"10.1109/SERA57763.2023.10197824","DOIUrl":null,"url":null,"abstract":"Computer vision and image processing algorithms work well under strong assumptions. Computer vision algorithms are not expected to do well on all kinds of inputs. For instance, excessively noisy images may not fetch optimal results for most computer vision algorithms. Unexpected outputs from the computer vision module can have negative downstream consequences for other modules in the pipeline. To mitigate such consequences, we use a predictor framework that was simultaneously trained with a Hardness Predictor network. This framework guarantees improved performance over those images with lower \"hardness\" values. The proposed predictor framework, when applied to the input data, would result in a relatively lower variance estimator when the size of the training set is large, both in the domain of semantic segmentation as well as regression analysis.","PeriodicalId":211080,"journal":{"name":"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realistic Predictors for Regression and Semantic Segmentation\",\"authors\":\"Krishna Chaitanya Gadepally, S. Dhal, Stavros Kalafatis, K. Nowka\",\"doi\":\"10.1109/SERA57763.2023.10197824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer vision and image processing algorithms work well under strong assumptions. Computer vision algorithms are not expected to do well on all kinds of inputs. For instance, excessively noisy images may not fetch optimal results for most computer vision algorithms. Unexpected outputs from the computer vision module can have negative downstream consequences for other modules in the pipeline. To mitigate such consequences, we use a predictor framework that was simultaneously trained with a Hardness Predictor network. This framework guarantees improved performance over those images with lower \\\"hardness\\\" values. The proposed predictor framework, when applied to the input data, would result in a relatively lower variance estimator when the size of the training set is large, both in the domain of semantic segmentation as well as regression analysis.\",\"PeriodicalId\":211080,\"journal\":{\"name\":\"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERA57763.2023.10197824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERA57763.2023.10197824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机视觉和图像处理算法在强假设下工作良好。计算机视觉算法并不能很好地处理所有类型的输入。例如,对于大多数计算机视觉算法来说,过度噪声的图像可能无法获得最佳结果。计算机视觉模块的意外输出可能会对管道中的其他模块产生负面的下游后果。为了减轻这种后果,我们使用了一个与硬度预测器网络同时训练的预测器框架。这个框架保证了比那些具有较低“硬度”值的图像更好的性能。将所提出的预测器框架应用于输入数据时,无论是在语义分割领域还是在回归分析领域,当训练集的规模较大时,都会得到一个相对较小的方差估计量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realistic Predictors for Regression and Semantic Segmentation
Computer vision and image processing algorithms work well under strong assumptions. Computer vision algorithms are not expected to do well on all kinds of inputs. For instance, excessively noisy images may not fetch optimal results for most computer vision algorithms. Unexpected outputs from the computer vision module can have negative downstream consequences for other modules in the pipeline. To mitigate such consequences, we use a predictor framework that was simultaneously trained with a Hardness Predictor network. This framework guarantees improved performance over those images with lower "hardness" values. The proposed predictor framework, when applied to the input data, would result in a relatively lower variance estimator when the size of the training set is large, both in the domain of semantic segmentation as well as regression analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信