L. Cordella, G. Percannella, Carlo Sansone, M. Vento
{"title":"一种用于检测乳房x线摄影图像中微钙化簇的图理论聚类方法","authors":"L. Cordella, G. Percannella, Carlo Sansone, M. Vento","doi":"10.1109/CBMS.2005.8","DOIUrl":null,"url":null,"abstract":"In this paper we propose a method based on a graph-theoretical cluster analysis for automatically finding cluster of micro-calcifications in mammographic images. It is applied to the image after a micro-calcification detection phase and is able to cope with the unavoidable false positives that each automatic detection algorithm produces. The proposed approach has been tested on a standard database of 40 mammographic images and revealed to be very effective even when the detection phase gives rise to several false positives.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A graph-theoretical clustering method for detecting clusters of micro-calcifications in mammographic images\",\"authors\":\"L. Cordella, G. Percannella, Carlo Sansone, M. Vento\",\"doi\":\"10.1109/CBMS.2005.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a method based on a graph-theoretical cluster analysis for automatically finding cluster of micro-calcifications in mammographic images. It is applied to the image after a micro-calcification detection phase and is able to cope with the unavoidable false positives that each automatic detection algorithm produces. The proposed approach has been tested on a standard database of 40 mammographic images and revealed to be very effective even when the detection phase gives rise to several false positives.\",\"PeriodicalId\":119367,\"journal\":{\"name\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2005.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A graph-theoretical clustering method for detecting clusters of micro-calcifications in mammographic images
In this paper we propose a method based on a graph-theoretical cluster analysis for automatically finding cluster of micro-calcifications in mammographic images. It is applied to the image after a micro-calcification detection phase and is able to cope with the unavoidable false positives that each automatic detection algorithm produces. The proposed approach has been tested on a standard database of 40 mammographic images and revealed to be very effective even when the detection phase gives rise to several false positives.