一种用于检测乳房x线摄影图像中微钙化簇的图理论聚类方法

L. Cordella, G. Percannella, Carlo Sansone, M. Vento
{"title":"一种用于检测乳房x线摄影图像中微钙化簇的图理论聚类方法","authors":"L. Cordella, G. Percannella, Carlo Sansone, M. Vento","doi":"10.1109/CBMS.2005.8","DOIUrl":null,"url":null,"abstract":"In this paper we propose a method based on a graph-theoretical cluster analysis for automatically finding cluster of micro-calcifications in mammographic images. It is applied to the image after a micro-calcification detection phase and is able to cope with the unavoidable false positives that each automatic detection algorithm produces. The proposed approach has been tested on a standard database of 40 mammographic images and revealed to be very effective even when the detection phase gives rise to several false positives.","PeriodicalId":119367,"journal":{"name":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A graph-theoretical clustering method for detecting clusters of micro-calcifications in mammographic images\",\"authors\":\"L. Cordella, G. Percannella, Carlo Sansone, M. Vento\",\"doi\":\"10.1109/CBMS.2005.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a method based on a graph-theoretical cluster analysis for automatically finding cluster of micro-calcifications in mammographic images. It is applied to the image after a micro-calcification detection phase and is able to cope with the unavoidable false positives that each automatic detection algorithm produces. The proposed approach has been tested on a standard database of 40 mammographic images and revealed to be very effective even when the detection phase gives rise to several false positives.\",\"PeriodicalId\":119367,\"journal\":{\"name\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2005.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2005.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种基于图理论聚类分析的乳房x线影像微钙化簇自动发现方法。它应用于微钙化检测阶段后的图像,能够应对每种自动检测算法产生的不可避免的假阳性。该方法已在一个包含40张乳房x线摄影图像的标准数据库中进行了测试,结果表明,即使在检测阶段产生了几个假阳性,该方法也非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A graph-theoretical clustering method for detecting clusters of micro-calcifications in mammographic images
In this paper we propose a method based on a graph-theoretical cluster analysis for automatically finding cluster of micro-calcifications in mammographic images. It is applied to the image after a micro-calcification detection phase and is able to cope with the unavoidable false positives that each automatic detection algorithm produces. The proposed approach has been tested on a standard database of 40 mammographic images and revealed to be very effective even when the detection phase gives rise to several false positives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信