{"title":"Dots-and-Polygons","authors":"Jessica L. Dickson, R. Perrier","doi":"10.2478/rmm-2022-0002","DOIUrl":null,"url":null,"abstract":"Abstract Dots-and-Boxes is a popular children’s game whose winning strategies have been studied by Berlekamp, Conway, Guy, and others. In this article we consider two variations, Dots-and-Triangles and Dots-and-Polygons, both of which utilize the same lattice game board structure as Dots-and-Boxes. The nature of these variations along with this lattice structure lends itself to applying Pick’s theorem to calculate claimed area. Several strategies similar to those studied in Dots-and-Boxes are used to analyze these new variations.","PeriodicalId":120489,"journal":{"name":"Recreational Mathematics Magazine","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dots-and-Polygons\",\"authors\":\"Jessica L. Dickson, R. Perrier\",\"doi\":\"10.2478/rmm-2022-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Dots-and-Boxes is a popular children’s game whose winning strategies have been studied by Berlekamp, Conway, Guy, and others. In this article we consider two variations, Dots-and-Triangles and Dots-and-Polygons, both of which utilize the same lattice game board structure as Dots-and-Boxes. The nature of these variations along with this lattice structure lends itself to applying Pick’s theorem to calculate claimed area. Several strategies similar to those studied in Dots-and-Boxes are used to analyze these new variations.\",\"PeriodicalId\":120489,\"journal\":{\"name\":\"Recreational Mathematics Magazine\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recreational Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rmm-2022-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recreational Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rmm-2022-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract Dots-and-Boxes is a popular children’s game whose winning strategies have been studied by Berlekamp, Conway, Guy, and others. In this article we consider two variations, Dots-and-Triangles and Dots-and-Polygons, both of which utilize the same lattice game board structure as Dots-and-Boxes. The nature of these variations along with this lattice structure lends itself to applying Pick’s theorem to calculate claimed area. Several strategies similar to those studied in Dots-and-Boxes are used to analyze these new variations.