ENDA:拥抱移动云计算中动态应用卸载的网络不一致性

MCC '13 Pub Date : 2013-08-16 DOI:10.1145/2491266.2491274
Jiwei Li, Kai Bu, Xuan Liu, Bin Xiao
{"title":"ENDA:拥抱移动云计算中动态应用卸载的网络不一致性","authors":"Jiwei Li, Kai Bu, Xuan Liu, Bin Xiao","doi":"10.1145/2491266.2491274","DOIUrl":null,"url":null,"abstract":"Mobile Cloud Computing (MCC) enables smartphones to offload compute-intensive codes and data to clouds or cloudlets for energy conservation. Thus, MCC liberates smartphones from battery shortage and embraces more versatile mobile applications. Most pioneering MCC research work requires a consistent network performance for offloading. However, such consistency is challenged by frequent mobile user movements and unstable network quality, thereby resulting in a suboptimal offloading decision. To embrace network inconsistency, we propose ENDA, a three-tier architecture that leverages user track prediction, realtime network performance and server loads to optimize offloading decisions. On cloud tier, we first design a greedy searching algorithm to predict user track using historical user traces stored in database servers. We then design a cloud-enabled Wi-Fi access point (AP) selection scheme to find the most energy efficient AP for smartphone offloading. We evaluate the performance of ENDA through simulations under a real-world scenario. The results demonstrate that ENDA can generate offloading decisions with optimized energy efficiency, desirable response time, and potential adaptability to a variety of scenarios. ENDA outperforms existing offloading techniques that do not consider user mobility and server workload balance management.","PeriodicalId":237435,"journal":{"name":"MCC '13","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"ENDA: embracing network inconsistency for dynamic application offloading in mobile cloud computing\",\"authors\":\"Jiwei Li, Kai Bu, Xuan Liu, Bin Xiao\",\"doi\":\"10.1145/2491266.2491274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile Cloud Computing (MCC) enables smartphones to offload compute-intensive codes and data to clouds or cloudlets for energy conservation. Thus, MCC liberates smartphones from battery shortage and embraces more versatile mobile applications. Most pioneering MCC research work requires a consistent network performance for offloading. However, such consistency is challenged by frequent mobile user movements and unstable network quality, thereby resulting in a suboptimal offloading decision. To embrace network inconsistency, we propose ENDA, a three-tier architecture that leverages user track prediction, realtime network performance and server loads to optimize offloading decisions. On cloud tier, we first design a greedy searching algorithm to predict user track using historical user traces stored in database servers. We then design a cloud-enabled Wi-Fi access point (AP) selection scheme to find the most energy efficient AP for smartphone offloading. We evaluate the performance of ENDA through simulations under a real-world scenario. The results demonstrate that ENDA can generate offloading decisions with optimized energy efficiency, desirable response time, and potential adaptability to a variety of scenarios. ENDA outperforms existing offloading techniques that do not consider user mobility and server workload balance management.\",\"PeriodicalId\":237435,\"journal\":{\"name\":\"MCC '13\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MCC '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2491266.2491274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MCC '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2491266.2491274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

移动云计算(MCC)使智能手机能够将计算密集型代码和数据卸载到云或小云上以实现节能。因此,MCC将智能手机从电池短缺中解放出来,并拥抱更多功能的移动应用。大多数开创性的MCC研究工作需要一致的网络性能来卸载。然而,这种一致性受到频繁的移动用户移动和不稳定的网络质量的挑战,从而导致次优卸载决策。为了适应网络不一致性,我们提出了ENDA,这是一种利用用户轨迹预测、实时网络性能和服务器负载来优化卸载决策的三层架构。在云层,我们首先设计了一种贪婪搜索算法,利用存储在数据库服务器上的历史用户轨迹来预测用户轨迹。然后,我们设计了一个支持云的Wi-Fi接入点(AP)选择方案,以找到最节能的智能手机卸载AP。我们通过在真实场景下的模拟来评估ENDA的性能。结果表明,ENDA可以产生具有优化的能源效率、理想的响应时间和对各种场景的潜在适应性的卸载决策。ENDA优于不考虑用户移动性和服务器工作负载平衡管理的现有卸载技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ENDA: embracing network inconsistency for dynamic application offloading in mobile cloud computing
Mobile Cloud Computing (MCC) enables smartphones to offload compute-intensive codes and data to clouds or cloudlets for energy conservation. Thus, MCC liberates smartphones from battery shortage and embraces more versatile mobile applications. Most pioneering MCC research work requires a consistent network performance for offloading. However, such consistency is challenged by frequent mobile user movements and unstable network quality, thereby resulting in a suboptimal offloading decision. To embrace network inconsistency, we propose ENDA, a three-tier architecture that leverages user track prediction, realtime network performance and server loads to optimize offloading decisions. On cloud tier, we first design a greedy searching algorithm to predict user track using historical user traces stored in database servers. We then design a cloud-enabled Wi-Fi access point (AP) selection scheme to find the most energy efficient AP for smartphone offloading. We evaluate the performance of ENDA through simulations under a real-world scenario. The results demonstrate that ENDA can generate offloading decisions with optimized energy efficiency, desirable response time, and potential adaptability to a variety of scenarios. ENDA outperforms existing offloading techniques that do not consider user mobility and server workload balance management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信