基于稳定性阈值的k -不稳定范诺变量的最优不稳定性

Harold Blum, Yuchen Liu, Chuyu Zhou
{"title":"基于稳定性阈值的k -不稳定范诺变量的最优不稳定性","authors":"Harold Blum, Yuchen Liu, Chuyu Zhou","doi":"10.2140/gt.2022.26.2507","DOIUrl":null,"url":null,"abstract":"We show that for a K-unstable Fano variety, any divisorial valuation computing its stability threshold induces a non-trivial special test configuration preserving the stability threshold. When such a divisorial valuation exists, we show that the Fano variety degenerates to a uniquely determined twisted K-polystable Fano variety. We also show that the stability threshold can be approximated by divisorial valuations induced by special test configurations. As an application of the above results and the analytic work of Datar, Szekelyhidi, and Ross, we deduce that greatest Ricci lower bounds of Fano manifolds of fixed dimension form a finite set of rational numbers. As a key step in the proofs, we adapt the process of Li and Xu producing special test configurations to twisted K-stability in the sense of Dervan.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Optimal destabilization of K–unstable Fano\\nvarieties via stability thresholds\",\"authors\":\"Harold Blum, Yuchen Liu, Chuyu Zhou\",\"doi\":\"10.2140/gt.2022.26.2507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for a K-unstable Fano variety, any divisorial valuation computing its stability threshold induces a non-trivial special test configuration preserving the stability threshold. When such a divisorial valuation exists, we show that the Fano variety degenerates to a uniquely determined twisted K-polystable Fano variety. We also show that the stability threshold can be approximated by divisorial valuations induced by special test configurations. As an application of the above results and the analytic work of Datar, Szekelyhidi, and Ross, we deduce that greatest Ricci lower bounds of Fano manifolds of fixed dimension form a finite set of rational numbers. As a key step in the proofs, we adapt the process of Li and Xu producing special test configurations to twisted K-stability in the sense of Dervan.\",\"PeriodicalId\":254292,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2022.26.2507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.2507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

我们证明了对于一个k -不稳定的Fano变量,计算其稳定性阈值的任何除法估值都会诱导出一个保留稳定性阈值的非平凡特殊测试配置。当这样的分值存在时,我们证明了Fano变量退化为唯一确定的扭曲k -聚稳定Fano变量。我们还证明了稳定性阈值可以由特殊测试配置引起的除数估值近似。应用上述结果和Datar、Szekelyhidi、Ross的解析工作,我们推导出定维Fano流形的最大Ricci下界是有限有理数的集合。作为证明的关键步骤,我们将Li和Xu在Dervan意义上对扭曲k稳定性产生特殊测试组的过程进行了调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal destabilization of K–unstable Fano varieties via stability thresholds
We show that for a K-unstable Fano variety, any divisorial valuation computing its stability threshold induces a non-trivial special test configuration preserving the stability threshold. When such a divisorial valuation exists, we show that the Fano variety degenerates to a uniquely determined twisted K-polystable Fano variety. We also show that the stability threshold can be approximated by divisorial valuations induced by special test configurations. As an application of the above results and the analytic work of Datar, Szekelyhidi, and Ross, we deduce that greatest Ricci lower bounds of Fano manifolds of fixed dimension form a finite set of rational numbers. As a key step in the proofs, we adapt the process of Li and Xu producing special test configurations to twisted K-stability in the sense of Dervan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信