基于航拍图像的巷级街道地图提取

Songtao He, Harinarayanan Balakrishnan
{"title":"基于航拍图像的巷级街道地图提取","authors":"Songtao He, Harinarayanan Balakrishnan","doi":"10.1109/WACV51458.2022.00156","DOIUrl":null,"url":null,"abstract":"Digital maps with lane-level details are the foundation of many applications. However, creating and maintaining digital maps especially maps with lane-level details, are labor-intensive and expensive. In this work, we propose a mapping pipeline to extract lane-level street maps from aerial imagery automatically. Our mapping pipeline first extracts lanes at non-intersection areas, then it enumerates all the possible turning lanes at intersections, validates the connectivity of them, and extracts the valid turning lanes to complete the map. We evaluate the accuracy of our mapping pipeline on a dataset consisting of four U.S. cities, demonstrating the effectiveness of our proposed mapping pipeline and the potential of scalable mapping solutions based on aerial imagery.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Lane-Level Street Map Extraction from Aerial Imagery\",\"authors\":\"Songtao He, Harinarayanan Balakrishnan\",\"doi\":\"10.1109/WACV51458.2022.00156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital maps with lane-level details are the foundation of many applications. However, creating and maintaining digital maps especially maps with lane-level details, are labor-intensive and expensive. In this work, we propose a mapping pipeline to extract lane-level street maps from aerial imagery automatically. Our mapping pipeline first extracts lanes at non-intersection areas, then it enumerates all the possible turning lanes at intersections, validates the connectivity of them, and extracts the valid turning lanes to complete the map. We evaluate the accuracy of our mapping pipeline on a dataset consisting of four U.S. cities, demonstrating the effectiveness of our proposed mapping pipeline and the potential of scalable mapping solutions based on aerial imagery.\",\"PeriodicalId\":297092,\"journal\":{\"name\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV51458.2022.00156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

具有车道级别细节的数字地图是许多应用程序的基础。然而,创建和维护数字地图,特别是具有车道级详细信息的地图,是劳动密集型且昂贵的。在这项工作中,我们提出了一个映射管道,从航空图像中自动提取车道级街道地图。我们的映射管道首先提取非交叉口区域的车道,然后枚举交叉口所有可能的转弯车道,验证它们的连通性,提取有效的转弯车道,完成地图绘制。我们在由四个美国城市组成的数据集上评估了我们的测绘管道的准确性,展示了我们提出的测绘管道的有效性以及基于航空图像的可扩展测绘解决方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lane-Level Street Map Extraction from Aerial Imagery
Digital maps with lane-level details are the foundation of many applications. However, creating and maintaining digital maps especially maps with lane-level details, are labor-intensive and expensive. In this work, we propose a mapping pipeline to extract lane-level street maps from aerial imagery automatically. Our mapping pipeline first extracts lanes at non-intersection areas, then it enumerates all the possible turning lanes at intersections, validates the connectivity of them, and extracts the valid turning lanes to complete the map. We evaluate the accuracy of our mapping pipeline on a dataset consisting of four U.S. cities, demonstrating the effectiveness of our proposed mapping pipeline and the potential of scalable mapping solutions based on aerial imagery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信