REPO-TRIAL:基于共同机制的药物再利用和内表型

H. Schmidt
{"title":"REPO-TRIAL:基于共同机制的药物再利用和内表型","authors":"H. Schmidt","doi":"10.1109/BIBM.2018.8621156","DOIUrl":null,"url":null,"abstract":"Drug therapy and drug discovery are in a conceptual crisis. Hardly any new drug principles are discovered. Existing drugs have a catastrophic number needed to treat. Hardly any therapy targets a disease mechanism, because it is not known. Instead symptoms, biomarkers and risk factors are treated. Moreover we currently systemise medicine according to 19th and 20th century disease terms, which are mainly organ and symptom-based but not mechanistic. Network medicine utilizes common genetic origins, markers and co-morbidities to uncover mechanistic links between diseases. These links can be summarized in the diseasome, a comprehensive network of disease–disease relationships and clusters. The diseasome has been influential during the past decade, although most of its links are not followed up experimentally. We propose a new disease taxonomy based on mechanism and abolishing organ- and symptom-based disease definitions. Terms as hypertension, heart failure, arrhythmia will in future be considered mere disease phenotypes, most likely comprised of several endotypes and linked to several comorbities. Several such mechanistic clusters of disease phenotypes have been identified. One links to cyclic GMP and reactive oxygen species sources and targets. When examine the disease associations in a non-hypothesis based manner in order to identify possibly previously unrecognized clinical indications. Surprisingly, we find that sGC, the cardiovascular target of nitroglycerin, is closest linked to neurological disorders, an application that has so far not been explored clinically. Indeed, when investigating the neurological indication of this cluster with the highest unmet medical need, ischemic stroke, pre-clinically we find that sGC activity is virtually absent post-stroke. Conversely, a heme-free form of sGC, apo-sGC, was now the predominant isoform suggesting it may be a mechanism-based target in stroke. Indeed, this repurposing hypothesis could be validated experimentally in vivo as specific activators of apo-sGC were directly neuroprotective, reduced infarct size and increased survival. Thus, common mechanism clusters of the diseasome allow direct drug repurposing across previously unrelated disease phenotypes redefining them in a mechanism-based manner. Our example of repurposing apo-sGC activators for ischemic stroke should be urgently validated clinically as a possible first-in-class neuroprotective therapy and serves as a proof-of-concept for redefining disease, identifying new therapies. The REPO-TRIAL H2020 programme will develop an innovative in-silico based approach to improve the efficacy and precision of drug repurposing trials. We have chosen drug repurposing as it has the shortest time for clinical validation and translation. Validation of all putatively de novo discovered drug repositionings within the time-frame of this programme would be unrealistic. To improve efficacy and precision, and to adopt our computer simulation parameters and models, we choose a systems medicine based in-silico approach that identifies mechanistically related disease phenotypes and, as a result, a virtual patient cohort. We then validate this in-silico drug repurposing via high precision clinical trials in patients with cerebrocardiovascular phenotypes stratified using an exclusive mechanistic biomarker panel. We thus innovate two biomedical product classes, drugs and diagnostics. With this we will establish generally applicable in silico trials for other mechanistically related or defined disease phenotypes, for which size, duration, and risks will be reduced and precision increased. This generates rapid patient benefit, reduces drug development costs as well as risks, and enhances industrial competitiveness. Scientifically, we will contribute to reducing the uncertainty and vagueness of many of our current disease definitions that describe a symptom or apparent phenotype in an organ rather than defining diseases mechanistically as disturbance of self-regulation equilibria of biomolecular processes. Finally, we will reduce animal experimentation and animal numbers in general by applying a preclinical randomised confirmatory trial (pRCTs) concept and preclinical systematic reviews and meta-analyses facilitated by our open access pre-clinicaltrials.org platform, a pendant to clinicaltrials.gov.","PeriodicalId":108667,"journal":{"name":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"REPO-TRIAL: Common mechanism-based drug repurposing and endophenotyping\",\"authors\":\"H. Schmidt\",\"doi\":\"10.1109/BIBM.2018.8621156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drug therapy and drug discovery are in a conceptual crisis. Hardly any new drug principles are discovered. Existing drugs have a catastrophic number needed to treat. Hardly any therapy targets a disease mechanism, because it is not known. Instead symptoms, biomarkers and risk factors are treated. Moreover we currently systemise medicine according to 19th and 20th century disease terms, which are mainly organ and symptom-based but not mechanistic. Network medicine utilizes common genetic origins, markers and co-morbidities to uncover mechanistic links between diseases. These links can be summarized in the diseasome, a comprehensive network of disease–disease relationships and clusters. The diseasome has been influential during the past decade, although most of its links are not followed up experimentally. We propose a new disease taxonomy based on mechanism and abolishing organ- and symptom-based disease definitions. Terms as hypertension, heart failure, arrhythmia will in future be considered mere disease phenotypes, most likely comprised of several endotypes and linked to several comorbities. Several such mechanistic clusters of disease phenotypes have been identified. One links to cyclic GMP and reactive oxygen species sources and targets. When examine the disease associations in a non-hypothesis based manner in order to identify possibly previously unrecognized clinical indications. Surprisingly, we find that sGC, the cardiovascular target of nitroglycerin, is closest linked to neurological disorders, an application that has so far not been explored clinically. Indeed, when investigating the neurological indication of this cluster with the highest unmet medical need, ischemic stroke, pre-clinically we find that sGC activity is virtually absent post-stroke. Conversely, a heme-free form of sGC, apo-sGC, was now the predominant isoform suggesting it may be a mechanism-based target in stroke. Indeed, this repurposing hypothesis could be validated experimentally in vivo as specific activators of apo-sGC were directly neuroprotective, reduced infarct size and increased survival. Thus, common mechanism clusters of the diseasome allow direct drug repurposing across previously unrelated disease phenotypes redefining them in a mechanism-based manner. Our example of repurposing apo-sGC activators for ischemic stroke should be urgently validated clinically as a possible first-in-class neuroprotective therapy and serves as a proof-of-concept for redefining disease, identifying new therapies. The REPO-TRIAL H2020 programme will develop an innovative in-silico based approach to improve the efficacy and precision of drug repurposing trials. We have chosen drug repurposing as it has the shortest time for clinical validation and translation. Validation of all putatively de novo discovered drug repositionings within the time-frame of this programme would be unrealistic. To improve efficacy and precision, and to adopt our computer simulation parameters and models, we choose a systems medicine based in-silico approach that identifies mechanistically related disease phenotypes and, as a result, a virtual patient cohort. We then validate this in-silico drug repurposing via high precision clinical trials in patients with cerebrocardiovascular phenotypes stratified using an exclusive mechanistic biomarker panel. We thus innovate two biomedical product classes, drugs and diagnostics. With this we will establish generally applicable in silico trials for other mechanistically related or defined disease phenotypes, for which size, duration, and risks will be reduced and precision increased. This generates rapid patient benefit, reduces drug development costs as well as risks, and enhances industrial competitiveness. Scientifically, we will contribute to reducing the uncertainty and vagueness of many of our current disease definitions that describe a symptom or apparent phenotype in an organ rather than defining diseases mechanistically as disturbance of self-regulation equilibria of biomolecular processes. Finally, we will reduce animal experimentation and animal numbers in general by applying a preclinical randomised confirmatory trial (pRCTs) concept and preclinical systematic reviews and meta-analyses facilitated by our open access pre-clinicaltrials.org platform, a pendant to clinicaltrials.gov.\",\"PeriodicalId\":108667,\"journal\":{\"name\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2018.8621156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2018.8621156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

药物治疗和药物发现正处于概念危机之中。几乎没有发现任何新的药物原理。现有的药物需要大量的治疗。几乎没有任何治疗针对疾病机制,因为它是未知的。相反,症状、生物标志物和风险因素得到了治疗。此外,我们目前根据19世纪和20世纪的疾病术语将医学系统化,这些术语主要是基于器官和症状的,而不是基于机制的。网络医学利用共同的遗传起源、标记和合并症来揭示疾病之间的机制联系。这些联系可以总结为疾病,疾病关系和集群的综合网络。在过去的十年里,这种疾病一直很有影响力,尽管它的大部分联系并没有在实验中得到跟进。我们提出了一种新的基于机制的疾病分类,废除了基于器官和症状的疾病定义。高血压、心力衰竭、心律失常等术语将被认为是单纯的疾病表型,很可能由几种内型组成,并与几种合并症有关。已经确定了几种这样的疾病表型的机制集群。一个链接到环GMP和活性氧的来源和目标。以非假设的方式检查疾病关联,以确定可能以前未被认识到的临床适应症。令人惊讶的是,我们发现硝酸甘油的心血管靶点sGC与神经系统疾病密切相关,这一应用迄今尚未在临床上进行探索。事实上,当研究这一群具有最高未满足医疗需求的神经学指征时,缺血性卒中,临床前我们发现sGC活动在卒中后几乎不存在。相反,无血红素形式的sGC,载脂蛋白sGC,现在是主要的异构体,表明它可能是卒中的一个基于机制的靶点。事实上,这种重新定位的假设可以在体内实验中得到验证,因为载脂蛋白sgc的特异性激活剂直接具有神经保护作用,可以减少梗死面积并提高生存率。因此,该疾病的共同机制簇允许在以前不相关的疾病表型上直接重新利用药物,以基于机制的方式重新定义它们。我们重新利用载脂蛋白sgc激活剂治疗缺血性卒中的例子应该迫切地作为一种可能的一流神经保护疗法进行临床验证,并作为重新定义疾病和确定新疗法的概念验证。REPO-TRIAL H2020规划将开发一种基于硅的创新方法,以提高药物再利用试验的有效性和准确性。我们选择了药物再利用,因为它的临床验证和转化时间最短。在本规划的时间框架内验证所有假定的新发现的药物重新定位是不现实的。为了提高疗效和准确性,并采用我们的计算机模拟参数和模型,我们选择了一种基于系统医学的计算机方法来识别机械相关的疾病表型,并因此建立了一个虚拟的患者队列。然后,我们通过高精度的临床试验,在使用独家机制生物标志物小组分层的脑血管表型患者中验证了这种计算机药物的再利用。因此,我们创新了两种生物医学产品类别,药物和诊断。有了这个,我们将建立普遍适用于其他机械相关或确定的疾病表型的硅试验,其规模、持续时间和风险将减少,精度将提高。这使患者迅速受益,降低了药物开发成本和风险,提高了产业竞争力。在科学上,我们将有助于减少目前许多描述器官症状或明显表型的疾病定义的不确定性和模糊性,而不是将疾病从机制上定义为生物分子过程自我调节平衡的干扰。最后,我们将通过应用临床前随机验证试验(prct)概念和临床前系统评价和meta分析来减少动物实验和动物数量,这些都是由我们的开放获取的pre-clinicaltrials.org平台(clinicaltrials.gov的附属平台)促进的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
REPO-TRIAL: Common mechanism-based drug repurposing and endophenotyping
Drug therapy and drug discovery are in a conceptual crisis. Hardly any new drug principles are discovered. Existing drugs have a catastrophic number needed to treat. Hardly any therapy targets a disease mechanism, because it is not known. Instead symptoms, biomarkers and risk factors are treated. Moreover we currently systemise medicine according to 19th and 20th century disease terms, which are mainly organ and symptom-based but not mechanistic. Network medicine utilizes common genetic origins, markers and co-morbidities to uncover mechanistic links between diseases. These links can be summarized in the diseasome, a comprehensive network of disease–disease relationships and clusters. The diseasome has been influential during the past decade, although most of its links are not followed up experimentally. We propose a new disease taxonomy based on mechanism and abolishing organ- and symptom-based disease definitions. Terms as hypertension, heart failure, arrhythmia will in future be considered mere disease phenotypes, most likely comprised of several endotypes and linked to several comorbities. Several such mechanistic clusters of disease phenotypes have been identified. One links to cyclic GMP and reactive oxygen species sources and targets. When examine the disease associations in a non-hypothesis based manner in order to identify possibly previously unrecognized clinical indications. Surprisingly, we find that sGC, the cardiovascular target of nitroglycerin, is closest linked to neurological disorders, an application that has so far not been explored clinically. Indeed, when investigating the neurological indication of this cluster with the highest unmet medical need, ischemic stroke, pre-clinically we find that sGC activity is virtually absent post-stroke. Conversely, a heme-free form of sGC, apo-sGC, was now the predominant isoform suggesting it may be a mechanism-based target in stroke. Indeed, this repurposing hypothesis could be validated experimentally in vivo as specific activators of apo-sGC were directly neuroprotective, reduced infarct size and increased survival. Thus, common mechanism clusters of the diseasome allow direct drug repurposing across previously unrelated disease phenotypes redefining them in a mechanism-based manner. Our example of repurposing apo-sGC activators for ischemic stroke should be urgently validated clinically as a possible first-in-class neuroprotective therapy and serves as a proof-of-concept for redefining disease, identifying new therapies. The REPO-TRIAL H2020 programme will develop an innovative in-silico based approach to improve the efficacy and precision of drug repurposing trials. We have chosen drug repurposing as it has the shortest time for clinical validation and translation. Validation of all putatively de novo discovered drug repositionings within the time-frame of this programme would be unrealistic. To improve efficacy and precision, and to adopt our computer simulation parameters and models, we choose a systems medicine based in-silico approach that identifies mechanistically related disease phenotypes and, as a result, a virtual patient cohort. We then validate this in-silico drug repurposing via high precision clinical trials in patients with cerebrocardiovascular phenotypes stratified using an exclusive mechanistic biomarker panel. We thus innovate two biomedical product classes, drugs and diagnostics. With this we will establish generally applicable in silico trials for other mechanistically related or defined disease phenotypes, for which size, duration, and risks will be reduced and precision increased. This generates rapid patient benefit, reduces drug development costs as well as risks, and enhances industrial competitiveness. Scientifically, we will contribute to reducing the uncertainty and vagueness of many of our current disease definitions that describe a symptom or apparent phenotype in an organ rather than defining diseases mechanistically as disturbance of self-regulation equilibria of biomolecular processes. Finally, we will reduce animal experimentation and animal numbers in general by applying a preclinical randomised confirmatory trial (pRCTs) concept and preclinical systematic reviews and meta-analyses facilitated by our open access pre-clinicaltrials.org platform, a pendant to clinicaltrials.gov.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信