神经网络算法中激活函数的模型组合(以分组零售状态伊斯兰债券为例)

Muhammad Noor Hasan Siregar
{"title":"神经网络算法中激活函数的模型组合(以分组零售状态伊斯兰债券为例)","authors":"Muhammad Noor Hasan Siregar","doi":"10.30645/IJISTECH.V2I2.23","DOIUrl":null,"url":null,"abstract":"This study aims to maximize the activation function used in backpropogation networks in finding the best architectural model. The case study used is the sale of state retail sukuk based on professional groups. The combination of activation functions used for training and testing is tansig-tansig, tansig-purelin and tansig logsig. The architectural model used is the architectural model 6-2-1 and 6-5-1. The evaluation parameters used are epoch, MSE training, MSE testing and accuracy level of truth. Data processing is assisted by using Matlab software. The results showed that the tansig-logsig activation function had more stable results than tansig-tansig and tansig-purelin.","PeriodicalId":417247,"journal":{"name":"IJISTECH (International Journal of Information System & Technology)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Combination of Activation Functions in Neural Network Algorithms (Case: Retail State Sukuk by Group)\",\"authors\":\"Muhammad Noor Hasan Siregar\",\"doi\":\"10.30645/IJISTECH.V2I2.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to maximize the activation function used in backpropogation networks in finding the best architectural model. The case study used is the sale of state retail sukuk based on professional groups. The combination of activation functions used for training and testing is tansig-tansig, tansig-purelin and tansig logsig. The architectural model used is the architectural model 6-2-1 and 6-5-1. The evaluation parameters used are epoch, MSE training, MSE testing and accuracy level of truth. Data processing is assisted by using Matlab software. The results showed that the tansig-logsig activation function had more stable results than tansig-tansig and tansig-purelin.\",\"PeriodicalId\":417247,\"journal\":{\"name\":\"IJISTECH (International Journal of Information System & Technology)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJISTECH (International Journal of Information System & Technology)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30645/IJISTECH.V2I2.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJISTECH (International Journal of Information System & Technology)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30645/IJISTECH.V2I2.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在最大限度地利用反向传播网络中的激活函数来寻找最佳的结构模型。所使用的案例研究是出售基于专业集团的国有零售伊斯兰债券。用于训练和测试的激活函数组合是tansg -tansig, tansg -purelin和tansg logsig。所使用的体系结构模型为6-2-1和6-5-1。使用的评价参数有epoch、MSE训练、MSE测试和真值准确性。利用Matlab软件辅助数据处理。结果表明,tansg -logsig激活函数比tansg -tansig和tansg -purelin具有更稳定的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Combination of Activation Functions in Neural Network Algorithms (Case: Retail State Sukuk by Group)
This study aims to maximize the activation function used in backpropogation networks in finding the best architectural model. The case study used is the sale of state retail sukuk based on professional groups. The combination of activation functions used for training and testing is tansig-tansig, tansig-purelin and tansig logsig. The architectural model used is the architectural model 6-2-1 and 6-5-1. The evaluation parameters used are epoch, MSE training, MSE testing and accuracy level of truth. Data processing is assisted by using Matlab software. The results showed that the tansig-logsig activation function had more stable results than tansig-tansig and tansig-purelin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信