以小波为基函数的投影法数值解第一类Fredholm积分方程

N. Temirbekov, L. Temirbekova
{"title":"以小波为基函数的投影法数值解第一类Fredholm积分方程","authors":"N. Temirbekov, L. Temirbekova","doi":"10.1063/5.0116266","DOIUrl":null,"url":null,"abstract":". In this paper, we review new works on approximate methods for solving the first kind Fredholm integral equations. The Galerkin-Bubnov projection method with Legendre wavelets is used for the numerical solution of the first kind Fredholm integral equations. Numerical calculations and the proven theorem show a very strong sensitivity of the solution to the accuracy of calculating double integrals for determining the elements of the matrix and the right-hand side of the system of linear algebraic equations, which are determined by cubature formulas or analytical formulas. Also, in this paper we obtain a priori estimates and convergence of the projection methods with bases in the form of wavelets on half-intervals. The performed comparative analysis shows that the Galerkin method with basis functions in the form of Legendre wavelets is efficient in terms of accuracy and is easy to implement.","PeriodicalId":383729,"journal":{"name":"10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical solution of the first kind Fredholm integral equations by projection methods with wavelets as the basis functions\",\"authors\":\"N. Temirbekov, L. Temirbekova\",\"doi\":\"10.1063/5.0116266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we review new works on approximate methods for solving the first kind Fredholm integral equations. The Galerkin-Bubnov projection method with Legendre wavelets is used for the numerical solution of the first kind Fredholm integral equations. Numerical calculations and the proven theorem show a very strong sensitivity of the solution to the accuracy of calculating double integrals for determining the elements of the matrix and the right-hand side of the system of linear algebraic equations, which are determined by cubature formulas or analytical formulas. Also, in this paper we obtain a priori estimates and convergence of the projection methods with bases in the form of wavelets on half-intervals. The performed comparative analysis shows that the Galerkin method with basis functions in the form of Legendre wavelets is efficient in terms of accuracy and is easy to implement.\",\"PeriodicalId\":383729,\"journal\":{\"name\":\"10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0116266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0116266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

. 本文综述了求解第一类Fredholm积分方程近似方法的最新研究成果。采用带Legendre小波的Galerkin-Bubnov投影法对第一类Fredholm积分方程进行了数值求解。数值计算和已证明的定理表明,对于确定矩阵元素和线性代数方程组右侧的二重积分的计算精度,该解具有很强的敏感性,这些二重积分是由数学公式或解析公式确定的。此外,本文还得到了半区间上小波形式的基投影方法的先验估计和收敛性。对比分析表明,基函数为勒让德小波形式的伽辽金方法精度高,易于实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solution of the first kind Fredholm integral equations by projection methods with wavelets as the basis functions
. In this paper, we review new works on approximate methods for solving the first kind Fredholm integral equations. The Galerkin-Bubnov projection method with Legendre wavelets is used for the numerical solution of the first kind Fredholm integral equations. Numerical calculations and the proven theorem show a very strong sensitivity of the solution to the accuracy of calculating double integrals for determining the elements of the matrix and the right-hand side of the system of linear algebraic equations, which are determined by cubature formulas or analytical formulas. Also, in this paper we obtain a priori estimates and convergence of the projection methods with bases in the form of wavelets on half-intervals. The performed comparative analysis shows that the Galerkin method with basis functions in the form of Legendre wavelets is efficient in terms of accuracy and is easy to implement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信