运载火箭气动弹性耦合系统分析

K. W. Dotson, R. Baker, R. Bywater
{"title":"运载火箭气动弹性耦合系统分析","authors":"K. W. Dotson, R. Baker, R. Bywater","doi":"10.1115/imece1997-0155","DOIUrl":null,"url":null,"abstract":"\n Forces due to alternating flow states on the payload fairing of launch vehicles can couple with structural responses during transonic flight. A new methodology for the assessment of this type of self-sustained oscillation is applied for an actual launch vehicle mission. Corresponding internal launch vehicle loads are compared with those for the other transonic airloads events. The limit cycle amplitude from the analysis is compared with that from application of an existing technique in the literature. It is shown that the new methodology can be significantly less conservative than the stability criterion for bounded system responses. The historical assumption that the alternating flow forces on the payload fairing couple with a single launch vehicle bending mode is investigated through transient analysis of the fully coupled system. Evidence of alternating flow separation in flight data for the Titan IV launch vehicle is presented.","PeriodicalId":166345,"journal":{"name":"4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise: Volume III","volume":"314 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systems Analysis of Launch Vehicle Aeroelastic Coupling\",\"authors\":\"K. W. Dotson, R. Baker, R. Bywater\",\"doi\":\"10.1115/imece1997-0155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Forces due to alternating flow states on the payload fairing of launch vehicles can couple with structural responses during transonic flight. A new methodology for the assessment of this type of self-sustained oscillation is applied for an actual launch vehicle mission. Corresponding internal launch vehicle loads are compared with those for the other transonic airloads events. The limit cycle amplitude from the analysis is compared with that from application of an existing technique in the literature. It is shown that the new methodology can be significantly less conservative than the stability criterion for bounded system responses. The historical assumption that the alternating flow forces on the payload fairing couple with a single launch vehicle bending mode is investigated through transient analysis of the fully coupled system. Evidence of alternating flow separation in flight data for the Titan IV launch vehicle is presented.\",\"PeriodicalId\":166345,\"journal\":{\"name\":\"4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise: Volume III\",\"volume\":\"314 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise: Volume III\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1997-0155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Symposium on Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise: Volume III","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1997-0155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在跨音速飞行中,运载火箭有效载荷整流罩上的交变流态力与结构响应是耦合的。在实际的运载火箭任务中应用了一种评估这种自持续振荡的新方法。将相应的运载火箭内部载荷与其他跨音速空载事件进行了比较。并将分析所得的极限环幅值与文献中已有技术的应用所得的极限环幅值进行了比较。结果表明,对于有界系统响应,新方法的保守性明显低于稳定性判据。通过对全耦合系统的瞬态分析,研究了单运载体弯曲载荷整流罩耦合上的交变流力的历史假设。提出了泰坦4号运载火箭飞行数据中存在交替流动分离的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systems Analysis of Launch Vehicle Aeroelastic Coupling
Forces due to alternating flow states on the payload fairing of launch vehicles can couple with structural responses during transonic flight. A new methodology for the assessment of this type of self-sustained oscillation is applied for an actual launch vehicle mission. Corresponding internal launch vehicle loads are compared with those for the other transonic airloads events. The limit cycle amplitude from the analysis is compared with that from application of an existing technique in the literature. It is shown that the new methodology can be significantly less conservative than the stability criterion for bounded system responses. The historical assumption that the alternating flow forces on the payload fairing couple with a single launch vehicle bending mode is investigated through transient analysis of the fully coupled system. Evidence of alternating flow separation in flight data for the Titan IV launch vehicle is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信