动态环境下基于随机博弈的认知无线网络频率分配

Xin Liu, Jinlong Wang, Qi-hui Wu, Yang Yang
{"title":"动态环境下基于随机博弈的认知无线网络频率分配","authors":"Xin Liu, Jinlong Wang, Qi-hui Wu, Yang Yang","doi":"10.1109/CyberC.2011.85","DOIUrl":null,"url":null,"abstract":"We investigate distributed frequency allocation problem in dynamic environment of cognitive radio (CR) networks with a stochastic game (SG) model. Traditional multi-agent reinforcement learning (MARL) algorithms, as the primary online strategy learning algorithms of SG game, are not suitable for the application of wireless communication. Hence, a new MARL algorithm, maximizing the average Q function algorithm (MAQ), is proposed in this article. MAQ not only reduces the intercommunications but also realizes indirect coordination among agents. Simulation results show the learning efficiency of MAQ which is close to that of centric learning method.","PeriodicalId":227472,"journal":{"name":"2011 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Frequency Allocation in Dynamic Environment of Cognitive Radio Networks Based on Stochastic Game\",\"authors\":\"Xin Liu, Jinlong Wang, Qi-hui Wu, Yang Yang\",\"doi\":\"10.1109/CyberC.2011.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate distributed frequency allocation problem in dynamic environment of cognitive radio (CR) networks with a stochastic game (SG) model. Traditional multi-agent reinforcement learning (MARL) algorithms, as the primary online strategy learning algorithms of SG game, are not suitable for the application of wireless communication. Hence, a new MARL algorithm, maximizing the average Q function algorithm (MAQ), is proposed in this article. MAQ not only reduces the intercommunications but also realizes indirect coordination among agents. Simulation results show the learning efficiency of MAQ which is close to that of centric learning method.\",\"PeriodicalId\":227472,\"journal\":{\"name\":\"2011 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CyberC.2011.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberC.2011.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

利用随机博弈模型研究了动态环境下认知无线电(CR)网络的分布频率分配问题。传统的多智能体强化学习(MARL)算法作为SG博弈的主要在线策略学习算法,不适合无线通信的应用。因此,本文提出了一种新的MARL算法——最大化平均Q函数算法(MAQ)。MAQ不仅减少了交互,而且实现了agent间的间接协调。仿真结果表明,该方法的学习效率与中心学习方法接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency Allocation in Dynamic Environment of Cognitive Radio Networks Based on Stochastic Game
We investigate distributed frequency allocation problem in dynamic environment of cognitive radio (CR) networks with a stochastic game (SG) model. Traditional multi-agent reinforcement learning (MARL) algorithms, as the primary online strategy learning algorithms of SG game, are not suitable for the application of wireless communication. Hence, a new MARL algorithm, maximizing the average Q function algorithm (MAQ), is proposed in this article. MAQ not only reduces the intercommunications but also realizes indirect coordination among agents. Simulation results show the learning efficiency of MAQ which is close to that of centric learning method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信