迭代空间滤波降低类内频谱变异性和噪声

Derek M. Rogge, B. Rivard
{"title":"迭代空间滤波降低类内频谱变异性和噪声","authors":"Derek M. Rogge, B. Rivard","doi":"10.1109/WHISPERS.2010.5594871","DOIUrl":null,"url":null,"abstract":"Intra-class variability and noise are obstacles that obscure subtle differences between spectral classes in hyperspectral imagery. This paper presents an iterative adaptive smoothing filter (IAS), which considers inherent spatial characteristics of image classes and the assumed random nature of pixel to pixel noise to minimize intra-class variability and noise. IAS makes use of standard hyperspectral spectral similarity measures, spectral angle and root-mean-squared error, to calculate and apply weighting functions to filter image pixels. Using a small window assures that spatially independent classes with subtle spectral differences can still be distinguished. The result is a change in the internal density distribution of the data volume (intra-class variability and noise), but the overall volume undergoes little change (inter-class variability). The usefulness of the filter is illustrated with simulated and real hyperspectral data.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Iterative spatial filtering for reducing intra-class spectral variability and noise\",\"authors\":\"Derek M. Rogge, B. Rivard\",\"doi\":\"10.1109/WHISPERS.2010.5594871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intra-class variability and noise are obstacles that obscure subtle differences between spectral classes in hyperspectral imagery. This paper presents an iterative adaptive smoothing filter (IAS), which considers inherent spatial characteristics of image classes and the assumed random nature of pixel to pixel noise to minimize intra-class variability and noise. IAS makes use of standard hyperspectral spectral similarity measures, spectral angle and root-mean-squared error, to calculate and apply weighting functions to filter image pixels. Using a small window assures that spatially independent classes with subtle spectral differences can still be distinguished. The result is a change in the internal density distribution of the data volume (intra-class variability and noise), but the overall volume undergoes little change (inter-class variability). The usefulness of the filter is illustrated with simulated and real hyperspectral data.\",\"PeriodicalId\":193944,\"journal\":{\"name\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2010.5594871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

类内变异性和噪声是模糊高光谱图像中光谱类之间细微差异的障碍。本文提出了一种迭代自适应平滑滤波器(IAS),该滤波器考虑了图像类的固有空间特征和像素间噪声的随机特性,以最大限度地减少类内变异性和噪声。IAS利用标准的高光谱光谱相似度度量、光谱角和均方根误差来计算和应用加权函数来过滤图像像素。使用小窗口可以确保仍然可以区分具有细微光谱差异的空间独立类。结果是数据量的内部密度分布发生了变化(类内变异性和噪声),但总体容量变化不大(类间变异性)。用模拟和真实的高光谱数据说明了该滤波器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative spatial filtering for reducing intra-class spectral variability and noise
Intra-class variability and noise are obstacles that obscure subtle differences between spectral classes in hyperspectral imagery. This paper presents an iterative adaptive smoothing filter (IAS), which considers inherent spatial characteristics of image classes and the assumed random nature of pixel to pixel noise to minimize intra-class variability and noise. IAS makes use of standard hyperspectral spectral similarity measures, spectral angle and root-mean-squared error, to calculate and apply weighting functions to filter image pixels. Using a small window assures that spatially independent classes with subtle spectral differences can still be distinguished. The result is a change in the internal density distribution of the data volume (intra-class variability and noise), but the overall volume undergoes little change (inter-class variability). The usefulness of the filter is illustrated with simulated and real hyperspectral data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信