{"title":"给空闲出租车司机的路线建议:给我找一条到客户的最短路线!","authors":"Nandani Garg, Sayan Ranu","doi":"10.1145/3219819.3220055","DOIUrl":null,"url":null,"abstract":"We study the problem of route recommendation to idle taxi drivers such that the distance between the taxi and an anticipated customer request is minimized. Minimizing the distance to the next anticipated customer leads to more productivity for the taxi driver and less waiting time for the customer. To anticipate when and where future customer requests are likely to come from and accordingly recom- mend routes, we develop a route recommendation engine called MDM: Minimizing Distance through Monte Carlo Tree Search. In contrast to existing techniques, MDM employs a continuous learning platform where the underlying model to predict future customer requests is dynamically updated. Extensive experiments on real taxi data from New York and San Francisco reveal that MDM is up to 70% better than the state of the art and robust to anomalous events such as concerts, sporting events, etc.","PeriodicalId":322066,"journal":{"name":"Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Route Recommendations for Idle Taxi Drivers: Find Me the Shortest Route to a Customer!\",\"authors\":\"Nandani Garg, Sayan Ranu\",\"doi\":\"10.1145/3219819.3220055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of route recommendation to idle taxi drivers such that the distance between the taxi and an anticipated customer request is minimized. Minimizing the distance to the next anticipated customer leads to more productivity for the taxi driver and less waiting time for the customer. To anticipate when and where future customer requests are likely to come from and accordingly recom- mend routes, we develop a route recommendation engine called MDM: Minimizing Distance through Monte Carlo Tree Search. In contrast to existing techniques, MDM employs a continuous learning platform where the underlying model to predict future customer requests is dynamically updated. Extensive experiments on real taxi data from New York and San Francisco reveal that MDM is up to 70% better than the state of the art and robust to anomalous events such as concerts, sporting events, etc.\",\"PeriodicalId\":322066,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3219819.3220055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3219819.3220055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Route Recommendations for Idle Taxi Drivers: Find Me the Shortest Route to a Customer!
We study the problem of route recommendation to idle taxi drivers such that the distance between the taxi and an anticipated customer request is minimized. Minimizing the distance to the next anticipated customer leads to more productivity for the taxi driver and less waiting time for the customer. To anticipate when and where future customer requests are likely to come from and accordingly recom- mend routes, we develop a route recommendation engine called MDM: Minimizing Distance through Monte Carlo Tree Search. In contrast to existing techniques, MDM employs a continuous learning platform where the underlying model to predict future customer requests is dynamically updated. Extensive experiments on real taxi data from New York and San Francisco reveal that MDM is up to 70% better than the state of the art and robust to anomalous events such as concerts, sporting events, etc.