基于连续时间模型的电池参数估计

G. Livint, M. Răţoi, V. Horga, M. Albu
{"title":"基于连续时间模型的电池参数估计","authors":"G. Livint, M. Răţoi, V. Horga, M. Albu","doi":"10.1109/ISSCS.2007.4292800","DOIUrl":null,"url":null,"abstract":"On line estimation of the battery state of charge may be realized through on optimal Kalman Filter, based on the battery model. In this paper is presented a method to obtain physical battery parameters. The proposal method is based on coefficients estimation of the continuous-time model.","PeriodicalId":225101,"journal":{"name":"2007 International Symposium on Signals, Circuits and Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Estimation of Battery Parameters Based on Continuous-Time Model\",\"authors\":\"G. Livint, M. Răţoi, V. Horga, M. Albu\",\"doi\":\"10.1109/ISSCS.2007.4292800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On line estimation of the battery state of charge may be realized through on optimal Kalman Filter, based on the battery model. In this paper is presented a method to obtain physical battery parameters. The proposal method is based on coefficients estimation of the continuous-time model.\",\"PeriodicalId\":225101,\"journal\":{\"name\":\"2007 International Symposium on Signals, Circuits and Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on Signals, Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCS.2007.4292800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Signals, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2007.4292800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

通过基于电池模型的最优卡尔曼滤波,可以实现对电池充电状态的在线估计。本文提出了一种获取电池物理参数的方法。该方法基于连续时间模型的系数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Battery Parameters Based on Continuous-Time Model
On line estimation of the battery state of charge may be realized through on optimal Kalman Filter, based on the battery model. In this paper is presented a method to obtain physical battery parameters. The proposal method is based on coefficients estimation of the continuous-time model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信