{"title":"海洋环境下移动通信系统LTE-Maritime路径损耗模型分析","authors":"Sung-Woong Jo, JunHyuk Jang, Wooseong Shim","doi":"10.1109/WPMC48795.2019.9096094","DOIUrl":null,"url":null,"abstract":"Mobile users in maritime environments have the limitation to use various data services due to insufficient communication infrastructure. Many communication systems commonly used for terrestrial users have been applied to maritime environments. The objective of this paper is to analyze the path loss characteristics of long term evolution (LTE) system and confirm its feasibility in maritime environments. In this purpose, we developed the test-bed for LTE-Maritime at coastline in the Republic of Korea and conducted onboard experiments for reference signal received power (RSRP) and throughput measurements. The measured RSRP values are compared with three conventional path loss models of free space path loss (FSPL), two ray (TR) path loss, Okumura-Hata (OH) model. The comparison results show that the existing models tend to underestimate the RSRP degradation suffered from maritime environment and there is a notable difference between the experiment data and path loss models. In order to analyze their accuracy, root mean square error (RMSE) for each model is calculated according to the distance between a transmitter and a receiver, and the results show that the expected error becomes high with increasing distance. In addition, the throughput measurements show that LTE can provide high-speed data services in the order of Mbps with the long communication distance up to 100 km.","PeriodicalId":298927,"journal":{"name":"2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An analysis of path loss models of LTE-Maritime for mobile communication system in maritime environments\",\"authors\":\"Sung-Woong Jo, JunHyuk Jang, Wooseong Shim\",\"doi\":\"10.1109/WPMC48795.2019.9096094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile users in maritime environments have the limitation to use various data services due to insufficient communication infrastructure. Many communication systems commonly used for terrestrial users have been applied to maritime environments. The objective of this paper is to analyze the path loss characteristics of long term evolution (LTE) system and confirm its feasibility in maritime environments. In this purpose, we developed the test-bed for LTE-Maritime at coastline in the Republic of Korea and conducted onboard experiments for reference signal received power (RSRP) and throughput measurements. The measured RSRP values are compared with three conventional path loss models of free space path loss (FSPL), two ray (TR) path loss, Okumura-Hata (OH) model. The comparison results show that the existing models tend to underestimate the RSRP degradation suffered from maritime environment and there is a notable difference between the experiment data and path loss models. In order to analyze their accuracy, root mean square error (RMSE) for each model is calculated according to the distance between a transmitter and a receiver, and the results show that the expected error becomes high with increasing distance. In addition, the throughput measurements show that LTE can provide high-speed data services in the order of Mbps with the long communication distance up to 100 km.\",\"PeriodicalId\":298927,\"journal\":{\"name\":\"2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPMC48795.2019.9096094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPMC48795.2019.9096094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An analysis of path loss models of LTE-Maritime for mobile communication system in maritime environments
Mobile users in maritime environments have the limitation to use various data services due to insufficient communication infrastructure. Many communication systems commonly used for terrestrial users have been applied to maritime environments. The objective of this paper is to analyze the path loss characteristics of long term evolution (LTE) system and confirm its feasibility in maritime environments. In this purpose, we developed the test-bed for LTE-Maritime at coastline in the Republic of Korea and conducted onboard experiments for reference signal received power (RSRP) and throughput measurements. The measured RSRP values are compared with three conventional path loss models of free space path loss (FSPL), two ray (TR) path loss, Okumura-Hata (OH) model. The comparison results show that the existing models tend to underestimate the RSRP degradation suffered from maritime environment and there is a notable difference between the experiment data and path loss models. In order to analyze their accuracy, root mean square error (RMSE) for each model is calculated according to the distance between a transmitter and a receiver, and the results show that the expected error becomes high with increasing distance. In addition, the throughput measurements show that LTE can provide high-speed data services in the order of Mbps with the long communication distance up to 100 km.