非负重尾数据的自适应伽玛- bspe核密度估计

Y. Ziane, N. Zougab, S. Adjabi
{"title":"非负重尾数据的自适应伽玛- bspe核密度估计","authors":"Y. Ziane, N. Zougab, S. Adjabi","doi":"10.58205/jiamcs.v2i2.32","DOIUrl":null,"url":null,"abstract":"In this work, we consider the nonparametric estimation of the probability density function for nonnegative heavy-tailed (HT) data. The objective is first to propose a new estimator that will combine two regions of observations (high and low density). While associating a gamma kernel to the high-density region and a BS-PE kernel to the low-density region. Then, to compare the proposed estimator with the classical estimator in order to evaluate its performance. The choice of bandwidth is investigated by adopting the popular cross-validation technique and two variants of the Bayesian approach. Finally, the performances of the proposed and the classical estimators are illustrated by a simulation study and real data.","PeriodicalId":289834,"journal":{"name":"Journal of Innovative Applied Mathematics and Computational Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"adaptive gamma-BSPE kernel density estimation for nonnegative heavy-tailed data\",\"authors\":\"Y. Ziane, N. Zougab, S. Adjabi\",\"doi\":\"10.58205/jiamcs.v2i2.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider the nonparametric estimation of the probability density function for nonnegative heavy-tailed (HT) data. The objective is first to propose a new estimator that will combine two regions of observations (high and low density). While associating a gamma kernel to the high-density region and a BS-PE kernel to the low-density region. Then, to compare the proposed estimator with the classical estimator in order to evaluate its performance. The choice of bandwidth is investigated by adopting the popular cross-validation technique and two variants of the Bayesian approach. Finally, the performances of the proposed and the classical estimators are illustrated by a simulation study and real data.\",\"PeriodicalId\":289834,\"journal\":{\"name\":\"Journal of Innovative Applied Mathematics and Computational Sciences\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innovative Applied Mathematics and Computational Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58205/jiamcs.v2i2.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovative Applied Mathematics and Computational Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58205/jiamcs.v2i2.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考虑非负重尾数据的概率密度函数的非参数估计。目标是首先提出一个新的估计器,它将结合两个观测区域(高密度和低密度)。同时将gamma核与高密度区域相关联,将BS-PE核与低密度区域相关联。然后,将该估计量与经典估计量进行比较,以评价其性能。采用流行的交叉验证技术和贝叶斯方法的两种变体来研究带宽的选择。最后,通过仿真研究和实际数据验证了所提估计器和经典估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
adaptive gamma-BSPE kernel density estimation for nonnegative heavy-tailed data
In this work, we consider the nonparametric estimation of the probability density function for nonnegative heavy-tailed (HT) data. The objective is first to propose a new estimator that will combine two regions of observations (high and low density). While associating a gamma kernel to the high-density region and a BS-PE kernel to the low-density region. Then, to compare the proposed estimator with the classical estimator in order to evaluate its performance. The choice of bandwidth is investigated by adopting the popular cross-validation technique and two variants of the Bayesian approach. Finally, the performances of the proposed and the classical estimators are illustrated by a simulation study and real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信