使用遗传算法抓取越南主题网页

Nguyen Quoc Nhan, Vu Tuan Son, Huynh Thi Thanh Binh, Tran Duc Khanh
{"title":"使用遗传算法抓取越南主题网页","authors":"Nguyen Quoc Nhan, Vu Tuan Son, Huynh Thi Thanh Binh, Tran Duc Khanh","doi":"10.1109/KSE.2010.25","DOIUrl":null,"url":null,"abstract":"A focused crawler traverses the web selecting out relevant pages according to a predefined topic. While browsing the internet it is difficult to identify relevant pages and predict which links lead to high quality pages. In this paper, we propose a crawler system using genetic algorithm to improve its crawling performance. Apart from estimating the best path to follow, our system also expands its initial keywords by using genetic algorithm during the crawling process. To crawl Vietnamese web pages, we apply a hybrid word segmentation approach which consists of combining automata and part of speech tagging techniques for the Vietnamese text classifier. We experiment our algorithm on Vietnamese websites. Experimental results are reported to show the efficiency of our system.","PeriodicalId":158823,"journal":{"name":"2010 Second International Conference on Knowledge and Systems Engineering","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Crawl Topical Vietnamese Web Pages Using Genetic Algorithm\",\"authors\":\"Nguyen Quoc Nhan, Vu Tuan Son, Huynh Thi Thanh Binh, Tran Duc Khanh\",\"doi\":\"10.1109/KSE.2010.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A focused crawler traverses the web selecting out relevant pages according to a predefined topic. While browsing the internet it is difficult to identify relevant pages and predict which links lead to high quality pages. In this paper, we propose a crawler system using genetic algorithm to improve its crawling performance. Apart from estimating the best path to follow, our system also expands its initial keywords by using genetic algorithm during the crawling process. To crawl Vietnamese web pages, we apply a hybrid word segmentation approach which consists of combining automata and part of speech tagging techniques for the Vietnamese text classifier. We experiment our algorithm on Vietnamese websites. Experimental results are reported to show the efficiency of our system.\",\"PeriodicalId\":158823,\"journal\":{\"name\":\"2010 Second International Conference on Knowledge and Systems Engineering\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Knowledge and Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE.2010.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Knowledge and Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE.2010.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

一个集中的爬虫遍历网络,根据预定义的主题选择出相关的页面。在浏览互联网时,很难识别相关页面并预测哪些链接指向高质量页面。在本文中,我们提出了一种使用遗传算法来提高其爬行性能的爬虫系统。除了估计最佳路径外,我们的系统还在爬行过程中使用遗传算法扩展其初始关键字。为了抓取越南语网页,我们将一种混合分词方法应用于越南语文本分类器,该方法结合了自动机和词性标注技术。我们在越南网站上试验我们的算法。实验结果表明了系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crawl Topical Vietnamese Web Pages Using Genetic Algorithm
A focused crawler traverses the web selecting out relevant pages according to a predefined topic. While browsing the internet it is difficult to identify relevant pages and predict which links lead to high quality pages. In this paper, we propose a crawler system using genetic algorithm to improve its crawling performance. Apart from estimating the best path to follow, our system also expands its initial keywords by using genetic algorithm during the crawling process. To crawl Vietnamese web pages, we apply a hybrid word segmentation approach which consists of combining automata and part of speech tagging techniques for the Vietnamese text classifier. We experiment our algorithm on Vietnamese websites. Experimental results are reported to show the efficiency of our system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信