channel Ant模型的自动海马分割:不同数据集上的结果

E. Fiorina, F. Pennazio, C. Peroni, E. L. Torres, M. Fantacci, A. Retico, L. Rei, A. Chincarini, P. Bosco, M. Boccardi, M. Bocchetta, P. Cerello
{"title":"channel Ant模型的自动海马分割:不同数据集上的结果","authors":"E. Fiorina, F. Pennazio, C. Peroni, E. L. Torres, M. Fantacci, A. Retico, L. Rei, A. Chincarini, P. Bosco, M. Boccardi, M. Bocchetta, P. Cerello","doi":"10.1109/MEMEA.2015.7145166","DOIUrl":null,"url":null,"abstract":"The hippocampus segmentation in Magnetic Resonance (MRI) scans is a relevant issue for the diagnosis of many pathologies. The present work describes a fully automated method for the hippocampal segmentation and discusses the results obtained on three datasets provided by different institutions and referring to different pathologies that involve hippocampus anatomy. The algorithm is based on an extension of the Channeler Ant Model, a powerful non linear segmentation tool belonging to the family of ant colony-based models, whose application to medical image processing already provided some promising results in the analysis of CT and PET scans. In this application, thanks to a modified pheromone deposition rule, both the grey matter intensity and the expected average hippocampus shape are taken into account. In this paper, the results on the three available datasets, obtained from the comparison to manual segmentations by different subjects and protocols, are shown: an average Dice Index in the 0.72- 0.79 range, depending on the analysed dataset, is reached.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated hippocampus segmentation with the Channeler Ant Model: Results on different datasets\",\"authors\":\"E. Fiorina, F. Pennazio, C. Peroni, E. L. Torres, M. Fantacci, A. Retico, L. Rei, A. Chincarini, P. Bosco, M. Boccardi, M. Bocchetta, P. Cerello\",\"doi\":\"10.1109/MEMEA.2015.7145166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hippocampus segmentation in Magnetic Resonance (MRI) scans is a relevant issue for the diagnosis of many pathologies. The present work describes a fully automated method for the hippocampal segmentation and discusses the results obtained on three datasets provided by different institutions and referring to different pathologies that involve hippocampus anatomy. The algorithm is based on an extension of the Channeler Ant Model, a powerful non linear segmentation tool belonging to the family of ant colony-based models, whose application to medical image processing already provided some promising results in the analysis of CT and PET scans. In this application, thanks to a modified pheromone deposition rule, both the grey matter intensity and the expected average hippocampus shape are taken into account. In this paper, the results on the three available datasets, obtained from the comparison to manual segmentations by different subjects and protocols, are shown: an average Dice Index in the 0.72- 0.79 range, depending on the analysed dataset, is reached.\",\"PeriodicalId\":277757,\"journal\":{\"name\":\"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMEA.2015.7145166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMEA.2015.7145166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在磁共振扫描海马分割是一个相关的问题,许多病理诊断。本文描述了一种全自动的海马体分割方法,并讨论了在不同机构提供的三个数据集上获得的结果,并参考了涉及海马体解剖的不同病理。该算法基于通道蚂蚁模型的扩展,通道蚂蚁模型是一种强大的非线性分割工具,属于蚁群模型家族,其在医学图像处理中的应用已经在CT和PET扫描分析中取得了一些有希望的结果。在这个应用中,由于修改了信息素沉积规则,灰质强度和预期的平均海马形状都被考虑在内。在本文中,通过对不同主题和协议的手动分割进行比较,得出了三个可用数据集的结果:根据所分析的数据集,Dice Index的平均值在0.72- 0.79之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated hippocampus segmentation with the Channeler Ant Model: Results on different datasets
The hippocampus segmentation in Magnetic Resonance (MRI) scans is a relevant issue for the diagnosis of many pathologies. The present work describes a fully automated method for the hippocampal segmentation and discusses the results obtained on three datasets provided by different institutions and referring to different pathologies that involve hippocampus anatomy. The algorithm is based on an extension of the Channeler Ant Model, a powerful non linear segmentation tool belonging to the family of ant colony-based models, whose application to medical image processing already provided some promising results in the analysis of CT and PET scans. In this application, thanks to a modified pheromone deposition rule, both the grey matter intensity and the expected average hippocampus shape are taken into account. In this paper, the results on the three available datasets, obtained from the comparison to manual segmentations by different subjects and protocols, are shown: an average Dice Index in the 0.72- 0.79 range, depending on the analysed dataset, is reached.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信