基于联想记忆的改进petri网移动机器人导航监测

A. Alexopoulos, L. Zouaghi, E. Badreddin
{"title":"基于联想记忆的改进petri网移动机器人导航监测","authors":"A. Alexopoulos, L. Zouaghi, E. Badreddin","doi":"10.1109/ICIES.2012.6530863","DOIUrl":null,"url":null,"abstract":"This paper presents an extension of a generic hybrid online monitoring approach for the navigation of autonomous mobile robots through an associative memory. Due to this extension, when a fault occurs the navigation process does not have to stop running in order to keep the system in a safe state and to ensure a high dependability. The associative memory enables the robot to remember the previously traversed paths inside a known environment and to learn new, unknown paths on-line. This long-term memory makes the monitor more dependable and more robust with respect to the fault detection, diagnosis and handling. To show the feasibility of the approach we apply it on an example of a mobile robot application.","PeriodicalId":410182,"journal":{"name":"2012 First International Conference on Innovative Engineering Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Associative memory for modified Petri-net based monitoring of mobile robot navigation\",\"authors\":\"A. Alexopoulos, L. Zouaghi, E. Badreddin\",\"doi\":\"10.1109/ICIES.2012.6530863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an extension of a generic hybrid online monitoring approach for the navigation of autonomous mobile robots through an associative memory. Due to this extension, when a fault occurs the navigation process does not have to stop running in order to keep the system in a safe state and to ensure a high dependability. The associative memory enables the robot to remember the previously traversed paths inside a known environment and to learn new, unknown paths on-line. This long-term memory makes the monitor more dependable and more robust with respect to the fault detection, diagnosis and handling. To show the feasibility of the approach we apply it on an example of a mobile robot application.\",\"PeriodicalId\":410182,\"journal\":{\"name\":\"2012 First International Conference on Innovative Engineering Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 First International Conference on Innovative Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIES.2012.6530863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 First International Conference on Innovative Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIES.2012.6530863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于联想记忆的自主移动机器人导航的通用混合在线监测方法的扩展。由于这种扩展,当故障发生时,导航过程不必停止运行,以保持系统处于安全状态并确保高可靠性。联想记忆使机器人能够记住以前在已知环境中走过的路径,并在线学习新的未知路径。这种长期记忆使得监视器在故障检测、诊断和处理方面更加可靠和健壮。为了证明该方法的可行性,我们将其应用于一个移动机器人应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Associative memory for modified Petri-net based monitoring of mobile robot navigation
This paper presents an extension of a generic hybrid online monitoring approach for the navigation of autonomous mobile robots through an associative memory. Due to this extension, when a fault occurs the navigation process does not have to stop running in order to keep the system in a safe state and to ensure a high dependability. The associative memory enables the robot to remember the previously traversed paths inside a known environment and to learn new, unknown paths on-line. This long-term memory makes the monitor more dependable and more robust with respect to the fault detection, diagnosis and handling. To show the feasibility of the approach we apply it on an example of a mobile robot application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信