使用类判别深度卷积生成对抗网络的字体创建

Kotaro Abe, Brian Kenji Iwana, Viktor Gosta Holmer, S. Uchida
{"title":"使用类判别深度卷积生成对抗网络的字体创建","authors":"Kotaro Abe, Brian Kenji Iwana, Viktor Gosta Holmer, S. Uchida","doi":"10.1109/ACPR.2017.99","DOIUrl":null,"url":null,"abstract":"In this research, we attempt to generate fonts automatically using a modification of a Deep Convolutional Generative Adversarial Network (DCGAN) by introducing class consideration. DCGANs are the application of generative adversarial networks (GAN) which make use of convolutional and deconvolutional layers to generate data through adversarial detection. The conventional GAN is comprised of two neural networks that work in series. Specifically, it approaches an unsupervised method of data generation with the use of a generative network whose output is fed into a second discriminative network. While DCGANs have been successful on natural images, we show its limited ability on font generation due to the high variation of fonts combined with the need of rigid structures of characters. We propose a class discriminative DCGAN which uses a classification network to work alongside the discriminative network to refine the generative network. This results of our experiment shows a dramatic improvement over the conventional DCGAN.","PeriodicalId":426561,"journal":{"name":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Font Creation Using Class Discriminative Deep Convolutional Generative Adversarial Networks\",\"authors\":\"Kotaro Abe, Brian Kenji Iwana, Viktor Gosta Holmer, S. Uchida\",\"doi\":\"10.1109/ACPR.2017.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we attempt to generate fonts automatically using a modification of a Deep Convolutional Generative Adversarial Network (DCGAN) by introducing class consideration. DCGANs are the application of generative adversarial networks (GAN) which make use of convolutional and deconvolutional layers to generate data through adversarial detection. The conventional GAN is comprised of two neural networks that work in series. Specifically, it approaches an unsupervised method of data generation with the use of a generative network whose output is fed into a second discriminative network. While DCGANs have been successful on natural images, we show its limited ability on font generation due to the high variation of fonts combined with the need of rigid structures of characters. We propose a class discriminative DCGAN which uses a classification network to work alongside the discriminative network to refine the generative network. This results of our experiment shows a dramatic improvement over the conventional DCGAN.\",\"PeriodicalId\":426561,\"journal\":{\"name\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2017.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2017.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本研究中,我们尝试通过引入类考虑,使用深度卷积生成对抗网络(DCGAN)的修改来自动生成字体。dcgan是生成式对抗网络(GAN)的应用,它利用卷积和反卷积层通过对抗检测生成数据。传统的GAN由两个串联工作的神经网络组成。具体地说,它采用一种无监督的数据生成方法,使用生成网络,其输出被馈送到第二个判别网络。虽然dcgan在自然图像上取得了成功,但由于字体的高度变化以及字符刚性结构的需要,我们证明了它在字体生成方面的能力有限。我们提出了一种类判别式DCGAN,它使用分类网络与判别网络一起工作来改进生成网络。实验结果表明,与传统的DCGAN相比,该算法有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Font Creation Using Class Discriminative Deep Convolutional Generative Adversarial Networks
In this research, we attempt to generate fonts automatically using a modification of a Deep Convolutional Generative Adversarial Network (DCGAN) by introducing class consideration. DCGANs are the application of generative adversarial networks (GAN) which make use of convolutional and deconvolutional layers to generate data through adversarial detection. The conventional GAN is comprised of two neural networks that work in series. Specifically, it approaches an unsupervised method of data generation with the use of a generative network whose output is fed into a second discriminative network. While DCGANs have been successful on natural images, we show its limited ability on font generation due to the high variation of fonts combined with the need of rigid structures of characters. We propose a class discriminative DCGAN which uses a classification network to work alongside the discriminative network to refine the generative network. This results of our experiment shows a dramatic improvement over the conventional DCGAN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信