自动化网络启发式设计和分析

Anup Agarwal, V. Arun, Devdeep Ray, R. Martins, S. Seshan
{"title":"自动化网络启发式设计和分析","authors":"Anup Agarwal, V. Arun, Devdeep Ray, R. Martins, S. Seshan","doi":"10.1145/3563766.3564085","DOIUrl":null,"url":null,"abstract":"Heuristics are ubiquitous in computer systems. Examples include congestion control, adaptive bit rate streaming, scheduling, load balancing, and caching. In some domains, theoretical proofs have provided clarity on the conditions where a heuristic is guaranteed to work well. This has not been possible in all domains because proving such guarantees can involve combinatorial reasoning making it hard, cumbersome and error-prone. In this paper we argue that computers should help humans with the combinatorial part of reasoning. We model reasoning questions as ∃∀ formulas [1] and solve them using the counterexample guided inductive synthesis (CEGIS) framework. As preliminary evidence, we prototype CCmatic, a tool that semi-automatically synthesizes congestion control algorithms that are provably robust. It rediscovered a recent congestion control algorithm that provably achieves high utilization and bounded delay under a challenging network model. It also found previously unknown variants of the algorithm that achieve different throughput-delay trade-offs.","PeriodicalId":339381,"journal":{"name":"Proceedings of the 21st ACM Workshop on Hot Topics in Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automating network heuristic design and analysis\",\"authors\":\"Anup Agarwal, V. Arun, Devdeep Ray, R. Martins, S. Seshan\",\"doi\":\"10.1145/3563766.3564085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heuristics are ubiquitous in computer systems. Examples include congestion control, adaptive bit rate streaming, scheduling, load balancing, and caching. In some domains, theoretical proofs have provided clarity on the conditions where a heuristic is guaranteed to work well. This has not been possible in all domains because proving such guarantees can involve combinatorial reasoning making it hard, cumbersome and error-prone. In this paper we argue that computers should help humans with the combinatorial part of reasoning. We model reasoning questions as ∃∀ formulas [1] and solve them using the counterexample guided inductive synthesis (CEGIS) framework. As preliminary evidence, we prototype CCmatic, a tool that semi-automatically synthesizes congestion control algorithms that are provably robust. It rediscovered a recent congestion control algorithm that provably achieves high utilization and bounded delay under a challenging network model. It also found previously unknown variants of the algorithm that achieve different throughput-delay trade-offs.\",\"PeriodicalId\":339381,\"journal\":{\"name\":\"Proceedings of the 21st ACM Workshop on Hot Topics in Networks\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM Workshop on Hot Topics in Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3563766.3564085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM Workshop on Hot Topics in Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3563766.3564085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

启发式在计算机系统中无处不在。示例包括拥塞控制、自适应比特率流、调度、负载平衡和缓存。在某些领域,理论证明已经明确了启发式保证良好工作的条件。这并非在所有领域都可行,因为证明此类保证可能涉及组合推理,使其变得困难、繁琐且容易出错。在本文中,我们认为计算机应该帮助人类进行推理的组合部分。我们将推理问题建模为∃∀公式[1],并使用反例引导归纳综合(CEGIS)框架来解决它们。作为初步证据,我们原型CCmatic,一个工具,半自动合成拥塞控制算法,证明是鲁棒的。重新发现了一种最新的拥塞控制算法,证明该算法在具有挑战性的网络模型下实现了高利用率和有界延迟。它还发现了以前未知的算法变体,这些变体实现了不同的吞吐量-延迟权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automating network heuristic design and analysis
Heuristics are ubiquitous in computer systems. Examples include congestion control, adaptive bit rate streaming, scheduling, load balancing, and caching. In some domains, theoretical proofs have provided clarity on the conditions where a heuristic is guaranteed to work well. This has not been possible in all domains because proving such guarantees can involve combinatorial reasoning making it hard, cumbersome and error-prone. In this paper we argue that computers should help humans with the combinatorial part of reasoning. We model reasoning questions as ∃∀ formulas [1] and solve them using the counterexample guided inductive synthesis (CEGIS) framework. As preliminary evidence, we prototype CCmatic, a tool that semi-automatically synthesizes congestion control algorithms that are provably robust. It rediscovered a recent congestion control algorithm that provably achieves high utilization and bounded delay under a challenging network model. It also found previously unknown variants of the algorithm that achieve different throughput-delay trade-offs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信