不确定性感知主题建模可视化

Valerie Müller, Christian Sieg, L. Linsen
{"title":"不确定性感知主题建模可视化","authors":"Valerie Müller, Christian Sieg, L. Linsen","doi":"10.1109/VIS4DH53644.2021.00007","DOIUrl":null,"url":null,"abstract":"Topic modeling is a state-of-the-art technique for analyzing text corpora. It uses a statistical model, most commonly Latent Dirichlet Allocation (LDA), to discover abstract topics that occur in the document collection. However, the LDA-based topic modeling procedure is based on a randomly selected initial configuration as well as a number of parameter values than need to be chosen. This induces uncertainties on the topic modeling results, and visualization methods should convey these uncertainties during the analysis process. We propose a visual uncertainty-aware topic modeling analysis. We capture the uncertainty by computing topic modeling ensembles and propose measures for estimating topic modeling uncertainty from the ensemble. Then, we propose to enhance state-of-the-art topic modeling visualization methods to convey the uncertainty in the topic modeling process. We visualize the entire ensemble of topic modeling results at different levels for topic and document analysis. We apply our visualization methods to a text corpus to document the impact of uncertainty on the analysis.","PeriodicalId":148635,"journal":{"name":"2021 IEEE 6th Workshop on Visualization for the Digital Humanities (VIS4DH)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uncertainty-aware Topic Modeling Visualization\",\"authors\":\"Valerie Müller, Christian Sieg, L. Linsen\",\"doi\":\"10.1109/VIS4DH53644.2021.00007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topic modeling is a state-of-the-art technique for analyzing text corpora. It uses a statistical model, most commonly Latent Dirichlet Allocation (LDA), to discover abstract topics that occur in the document collection. However, the LDA-based topic modeling procedure is based on a randomly selected initial configuration as well as a number of parameter values than need to be chosen. This induces uncertainties on the topic modeling results, and visualization methods should convey these uncertainties during the analysis process. We propose a visual uncertainty-aware topic modeling analysis. We capture the uncertainty by computing topic modeling ensembles and propose measures for estimating topic modeling uncertainty from the ensemble. Then, we propose to enhance state-of-the-art topic modeling visualization methods to convey the uncertainty in the topic modeling process. We visualize the entire ensemble of topic modeling results at different levels for topic and document analysis. We apply our visualization methods to a text corpus to document the impact of uncertainty on the analysis.\",\"PeriodicalId\":148635,\"journal\":{\"name\":\"2021 IEEE 6th Workshop on Visualization for the Digital Humanities (VIS4DH)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 6th Workshop on Visualization for the Digital Humanities (VIS4DH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIS4DH53644.2021.00007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 6th Workshop on Visualization for the Digital Humanities (VIS4DH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS4DH53644.2021.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

主题建模是一种用于分析文本语料库的最新技术。它使用一个统计模型(最常见的是Latent Dirichlet Allocation (LDA))来发现文档集合中出现的抽象主题。但是,基于lda的主题建模过程是基于随机选择的初始配置以及需要选择的许多参数值。这给主题建模结果带来了不确定性,可视化方法应该在分析过程中传达这些不确定性。我们提出了一种视觉不确定性感知主题建模分析。我们通过计算主题建模集成来捕获不确定性,并提出了从集成中估计主题建模不确定性的措施。在此基础上,我们提出了改进当前主题建模可视化方法,以传达主题建模过程中的不确定性。我们将不同层次的主题建模结果的整体可视化,用于主题和文档分析。我们将可视化方法应用于文本语料库,以记录不确定性对分析的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty-aware Topic Modeling Visualization
Topic modeling is a state-of-the-art technique for analyzing text corpora. It uses a statistical model, most commonly Latent Dirichlet Allocation (LDA), to discover abstract topics that occur in the document collection. However, the LDA-based topic modeling procedure is based on a randomly selected initial configuration as well as a number of parameter values than need to be chosen. This induces uncertainties on the topic modeling results, and visualization methods should convey these uncertainties during the analysis process. We propose a visual uncertainty-aware topic modeling analysis. We capture the uncertainty by computing topic modeling ensembles and propose measures for estimating topic modeling uncertainty from the ensemble. Then, we propose to enhance state-of-the-art topic modeling visualization methods to convey the uncertainty in the topic modeling process. We visualize the entire ensemble of topic modeling results at different levels for topic and document analysis. We apply our visualization methods to a text corpus to document the impact of uncertainty on the analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信