论图的艾伯森不规则测度

M. Matejic, B. Mitić, E. Milovanovic, I. Milovanovic
{"title":"论图的艾伯森不规则测度","authors":"M. Matejic, B. Mitić, E. Milovanovic, I. Milovanovic","doi":"10.5937/spsunp1902097m","DOIUrl":null,"url":null,"abstract":"Let G = (V,E), V = {1,2, . . . ,n} be a simple connected graph with n vertices, m edges and a sequence of vertex degrees d1 ≥ d2 ≥ ·· · ≥ dn > 0, di = d(i). The irregularity measure of graph is defined as irr(G)=∑i∼ j ∣∣di −d j∣∣, where i∼ j denotes adjacency of vertices i and j. New upper bounds for irr(G) are obtained.","PeriodicalId":394770,"journal":{"name":"Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On Alberson irregularity measure of graphs\",\"authors\":\"M. Matejic, B. Mitić, E. Milovanovic, I. Milovanovic\",\"doi\":\"10.5937/spsunp1902097m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G = (V,E), V = {1,2, . . . ,n} be a simple connected graph with n vertices, m edges and a sequence of vertex degrees d1 ≥ d2 ≥ ·· · ≥ dn > 0, di = d(i). The irregularity measure of graph is defined as irr(G)=∑i∼ j ∣∣di −d j∣∣, where i∼ j denotes adjacency of vertices i and j. New upper bounds for irr(G) are obtained.\",\"PeriodicalId\":394770,\"journal\":{\"name\":\"Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/spsunp1902097m\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/spsunp1902097m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

设G = (V,E), V ={1,2,…,n}为具有n个顶点、m条边、顶点度数d1≥d2≥···≥dn > 0的简单连通图,di = d(i)。图的不规则度定义为irr(G)=∑i ~ j∣∣di−d j∣∣,其中i ~ j表示顶点i和j的邻接性。得到了irr(G)的新的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Alberson irregularity measure of graphs
Let G = (V,E), V = {1,2, . . . ,n} be a simple connected graph with n vertices, m edges and a sequence of vertex degrees d1 ≥ d2 ≥ ·· · ≥ dn > 0, di = d(i). The irregularity measure of graph is defined as irr(G)=∑i∼ j ∣∣di −d j∣∣, where i∼ j denotes adjacency of vertices i and j. New upper bounds for irr(G) are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信