基于人工智能的中国电子病历分析数据治理

J. Zhong, X. Yi, Jian Wang, Z. Shao, Panpan Wang, Sen Lin
{"title":"基于人工智能的中国电子病历分析数据治理","authors":"J. Zhong, X. Yi, Jian Wang, Z. Shao, Panpan Wang, Sen Lin","doi":"10.5121/IJDKP.2018.8303","DOIUrl":null,"url":null,"abstract":"Electronic health record (EHR) analysis can leverage great insights to improve the quality of human healthcare. However, the low data quality problems of missing values, inconsistency, and errors in the data setseverely hinder buildingrobust machine learning models for data analysis. In this paper, we develop a methodology ofartificial intelligence (AI)-based data governance to predict the missing values or verify if the existing values are correct and what they should be when they are wrong. We demonstrate the performance of this methodology through a case study ofpatient gender prediction and verification. Experimental resultsshow that the deep learning algorithm of convolutional neural network (CNN) works very wellaccording to the testing performance measured by the quantitative metric of F1-Score, and it outperformsthe support vector machine (SVM) models with different vector representations for documents.","PeriodicalId":131153,"journal":{"name":"International Journal of Data Mining & Knowledge Management Process","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Artificial Intelligence Based Data Governance for Chinese Electronic Health Record Analysis\",\"authors\":\"J. Zhong, X. Yi, Jian Wang, Z. Shao, Panpan Wang, Sen Lin\",\"doi\":\"10.5121/IJDKP.2018.8303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic health record (EHR) analysis can leverage great insights to improve the quality of human healthcare. However, the low data quality problems of missing values, inconsistency, and errors in the data setseverely hinder buildingrobust machine learning models for data analysis. In this paper, we develop a methodology ofartificial intelligence (AI)-based data governance to predict the missing values or verify if the existing values are correct and what they should be when they are wrong. We demonstrate the performance of this methodology through a case study ofpatient gender prediction and verification. Experimental resultsshow that the deep learning algorithm of convolutional neural network (CNN) works very wellaccording to the testing performance measured by the quantitative metric of F1-Score, and it outperformsthe support vector machine (SVM) models with different vector representations for documents.\",\"PeriodicalId\":131153,\"journal\":{\"name\":\"International Journal of Data Mining & Knowledge Management Process\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining & Knowledge Management Process\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJDKP.2018.8303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining & Knowledge Management Process","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJDKP.2018.8303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电子健康记录(EHR)分析可以利用深刻的见解来提高人类医疗保健的质量。然而,数据集中的缺失值、不一致和错误等低数据质量问题严重阻碍了构建用于数据分析的鲁棒机器学习模型。在本文中,我们开发了一种基于人工智能(AI)的数据治理方法来预测缺失值或验证现有值是否正确以及当它们错误时应该是什么。我们通过患者性别预测和验证的案例研究来证明这种方法的性能。实验结果表明,根据F1-Score定量度量的测试性能,卷积神经网络(CNN)的深度学习算法效果非常好,并且优于具有不同向量表示的支持向量机(SVM)模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence Based Data Governance for Chinese Electronic Health Record Analysis
Electronic health record (EHR) analysis can leverage great insights to improve the quality of human healthcare. However, the low data quality problems of missing values, inconsistency, and errors in the data setseverely hinder buildingrobust machine learning models for data analysis. In this paper, we develop a methodology ofartificial intelligence (AI)-based data governance to predict the missing values or verify if the existing values are correct and what they should be when they are wrong. We demonstrate the performance of this methodology through a case study ofpatient gender prediction and verification. Experimental resultsshow that the deep learning algorithm of convolutional neural network (CNN) works very wellaccording to the testing performance measured by the quantitative metric of F1-Score, and it outperformsthe support vector machine (SVM) models with different vector representations for documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信