灰质和白质的关系改变了正常寿命期间血管周围空间的可见性

Chenyang Li, Henry Nguyen, Jingyun Chen, H. Rusinek, Y. Ge
{"title":"灰质和白质的关系改变了正常寿命期间血管周围空间的可见性","authors":"Chenyang Li, Henry Nguyen, Jingyun Chen, H. Rusinek, Y. Ge","doi":"10.4081/vl.2022.10963","DOIUrl":null,"url":null,"abstract":"Background: Perivascular space (PVS), also known as Virchow-Robin space, has been recently recognized as one of the most important components in the glymphatic system of the brain,1 which is closely related to waste and toxins clearance in the brain. On T1- and T2-weighted images, PVS has similar signal intensities to cerebrospinal fluid (CSF), which are frequently observed in the centrum semiovale (CSO) and basal ganglia (BG) regions. A previous study2 has shown that PVS increases with age and enlarged PVS was deemed associated with neurodegenerative and vascular abnormalities in the elderly.3 Although the exact mechanism is still elusive, more evidence showed visible PVS in younger adults or even at the adolescent stage. In this study, we use the human connectome project (HCP) lifespan pilot cohort to characterize the relationship of neuronal tissue to PVS visibility across the normative lifespan. \nMethods: T1-weighted (0.8mm isotropic, TE/TR=2.12/2400 ms), T2-weighted (0.8mm isotropic, TE/TR=563/3200 ms), and diffusion magnetic resonance imaging (MRI) (1.5 mm isotropic, dir80) data were used from HCP lifespan pilot project (N=27, F/M: 12/15, age 8-75 years). PVS segmentation in white matter (WM) and BG was performed using the same method described in Sepehrband et al.4 (Figure 1). WM PVS volume fraction was calculated by dividing the total PVS volume by WM volume. Pearson correlation and one-way ANOVA were used for statistical analysis. \nResults: The grey matter (GM) volume fraction is negatively correlated with WM PVS volume (p<0.001, R2=0.374). In addition, we have observed an increase in PVS volume fraction in WM across the lifespan, but there is no significant difference in PVS volume fraction before the age of 55. From an age group range of 8-35 years old, the visible PVS is mostly located in CSO, less PVS is observed in the BG region. However, on the other hand, in the elderly group (age >65 years), high-visibility of PVS is observed both in WM and BG regions. Conclusions: Across the normative lifespan, PVS appearance is negatively correlated with the GM atrophy index, indicating the potential usage of PVS as a marker of neurodegeneration. In WM, we reported that increased PVS is associated with advancing age, which is consistent with previous reports.2 Interestingly, we found that in adolescent populations, the PVS occurs mostly in CSO but not in the BG region. In CSO, as shown from fiber orientation distribution analysis, the PVS is mainly located in crossing fiber regions with lower fiber density. However, In BG regions, the PVS occurs in deep GM nuclei (caudate, putamen) and major fiber tracts such as internal capsules or cortical spinal tracts, which are more densely packed compared to crossing-fibers in CSO. Previous studies have reported that the WM blood flow is inversely correlated with FA,5 the tightly structured fibers tend to show lower blood flow if compared to loosened ones. The high visibility of PVS in CSO may also be due to more loosened fiber structures, which lead to more axonal spaces for PVS fluid movement.","PeriodicalId":421508,"journal":{"name":"Veins and Lymphatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationship of grey matter and white matter changes the visibility of perivascular space across normative lifespan\",\"authors\":\"Chenyang Li, Henry Nguyen, Jingyun Chen, H. Rusinek, Y. Ge\",\"doi\":\"10.4081/vl.2022.10963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Perivascular space (PVS), also known as Virchow-Robin space, has been recently recognized as one of the most important components in the glymphatic system of the brain,1 which is closely related to waste and toxins clearance in the brain. On T1- and T2-weighted images, PVS has similar signal intensities to cerebrospinal fluid (CSF), which are frequently observed in the centrum semiovale (CSO) and basal ganglia (BG) regions. A previous study2 has shown that PVS increases with age and enlarged PVS was deemed associated with neurodegenerative and vascular abnormalities in the elderly.3 Although the exact mechanism is still elusive, more evidence showed visible PVS in younger adults or even at the adolescent stage. In this study, we use the human connectome project (HCP) lifespan pilot cohort to characterize the relationship of neuronal tissue to PVS visibility across the normative lifespan. \\nMethods: T1-weighted (0.8mm isotropic, TE/TR=2.12/2400 ms), T2-weighted (0.8mm isotropic, TE/TR=563/3200 ms), and diffusion magnetic resonance imaging (MRI) (1.5 mm isotropic, dir80) data were used from HCP lifespan pilot project (N=27, F/M: 12/15, age 8-75 years). PVS segmentation in white matter (WM) and BG was performed using the same method described in Sepehrband et al.4 (Figure 1). WM PVS volume fraction was calculated by dividing the total PVS volume by WM volume. Pearson correlation and one-way ANOVA were used for statistical analysis. \\nResults: The grey matter (GM) volume fraction is negatively correlated with WM PVS volume (p<0.001, R2=0.374). In addition, we have observed an increase in PVS volume fraction in WM across the lifespan, but there is no significant difference in PVS volume fraction before the age of 55. From an age group range of 8-35 years old, the visible PVS is mostly located in CSO, less PVS is observed in the BG region. However, on the other hand, in the elderly group (age >65 years), high-visibility of PVS is observed both in WM and BG regions. Conclusions: Across the normative lifespan, PVS appearance is negatively correlated with the GM atrophy index, indicating the potential usage of PVS as a marker of neurodegeneration. In WM, we reported that increased PVS is associated with advancing age, which is consistent with previous reports.2 Interestingly, we found that in adolescent populations, the PVS occurs mostly in CSO but not in the BG region. In CSO, as shown from fiber orientation distribution analysis, the PVS is mainly located in crossing fiber regions with lower fiber density. However, In BG regions, the PVS occurs in deep GM nuclei (caudate, putamen) and major fiber tracts such as internal capsules or cortical spinal tracts, which are more densely packed compared to crossing-fibers in CSO. Previous studies have reported that the WM blood flow is inversely correlated with FA,5 the tightly structured fibers tend to show lower blood flow if compared to loosened ones. The high visibility of PVS in CSO may also be due to more loosened fiber structures, which lead to more axonal spaces for PVS fluid movement.\",\"PeriodicalId\":421508,\"journal\":{\"name\":\"Veins and Lymphatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veins and Lymphatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4081/vl.2022.10963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veins and Lymphatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/vl.2022.10963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:血管周围间隙(Perivascular space, PVS),也被称为Virchow-Robin间隙,是近年来被认为是脑淋巴系统中最重要的组成部分之一,它与脑内废物和毒素的清除密切相关。在T1和t2加权图像上,PVS具有与脑脊液(CSF)相似的信号强度,脑脊液(CSF)经常在半瓣膜中央(CSO)和基底节区(BG)观察到。先前的一项研究表明,PVS随着年龄的增长而增加,PVS增大被认为与老年人的神经退行性和血管异常有关虽然确切的机制仍然难以捉摸,但更多的证据表明,在年轻人甚至青少年阶段,PVS是可见的。在这项研究中,我们使用人类连接组计划(HCP)寿命试点队列来表征整个正常寿命中神经元组织与PVS可见性的关系。方法:采用HCP寿命试点项目(N=27, F/M: 12/15,年龄8 ~ 75岁)的t1加权(0.8mm各向同性,TE/TR=2.12/2400 ms)、t2加权(0.8mm各向同性,TE/TR=563/3200 ms)和弥散磁共振成像(MRI) (1.5 mm各向同性,dir80)数据。白质(WM)和BG的PVS分割方法与Sepehrband等人4描述的方法相同(图1)。通过PVS总体积除以WM体积计算WM PVS体积分数。采用Pearson相关和单因素方差分析进行统计分析。结果:灰质(GM)体积分数与WM PVS体积(p65年)呈负相关,WM和BG区域均可见PVS。结论:在整个标准寿命中,PVS的出现与GM萎缩指数呈负相关,表明PVS可能被用作神经退行性变的标志物。在WM中,我们报道了PVS的增加与年龄的增长有关,这与之前的报道一致有趣的是,我们发现在青少年人群中,PVS主要发生在CSO区,而不是BG区。在CSO中,从纤维取向分布分析可以看出,PVS主要位于纤维密度较低的交叉纤维区域。然而,在BG区,PVS发生在GM核深部(尾状核、壳核)和主要纤维束,如内囊或皮质脊髓束,与CSO中的交叉纤维相比,这些纤维束的密度更大。先前的研究报道WM血流量与FA呈负相关,5结构紧密的纤维与松散的纤维相比,往往显示出更低的血流量。PVS在CSO中的高可见性也可能是由于更多的纤维结构松动,这导致更多的轴突空间供PVS流体运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relationship of grey matter and white matter changes the visibility of perivascular space across normative lifespan
Background: Perivascular space (PVS), also known as Virchow-Robin space, has been recently recognized as one of the most important components in the glymphatic system of the brain,1 which is closely related to waste and toxins clearance in the brain. On T1- and T2-weighted images, PVS has similar signal intensities to cerebrospinal fluid (CSF), which are frequently observed in the centrum semiovale (CSO) and basal ganglia (BG) regions. A previous study2 has shown that PVS increases with age and enlarged PVS was deemed associated with neurodegenerative and vascular abnormalities in the elderly.3 Although the exact mechanism is still elusive, more evidence showed visible PVS in younger adults or even at the adolescent stage. In this study, we use the human connectome project (HCP) lifespan pilot cohort to characterize the relationship of neuronal tissue to PVS visibility across the normative lifespan. Methods: T1-weighted (0.8mm isotropic, TE/TR=2.12/2400 ms), T2-weighted (0.8mm isotropic, TE/TR=563/3200 ms), and diffusion magnetic resonance imaging (MRI) (1.5 mm isotropic, dir80) data were used from HCP lifespan pilot project (N=27, F/M: 12/15, age 8-75 years). PVS segmentation in white matter (WM) and BG was performed using the same method described in Sepehrband et al.4 (Figure 1). WM PVS volume fraction was calculated by dividing the total PVS volume by WM volume. Pearson correlation and one-way ANOVA were used for statistical analysis. Results: The grey matter (GM) volume fraction is negatively correlated with WM PVS volume (p<0.001, R2=0.374). In addition, we have observed an increase in PVS volume fraction in WM across the lifespan, but there is no significant difference in PVS volume fraction before the age of 55. From an age group range of 8-35 years old, the visible PVS is mostly located in CSO, less PVS is observed in the BG region. However, on the other hand, in the elderly group (age >65 years), high-visibility of PVS is observed both in WM and BG regions. Conclusions: Across the normative lifespan, PVS appearance is negatively correlated with the GM atrophy index, indicating the potential usage of PVS as a marker of neurodegeneration. In WM, we reported that increased PVS is associated with advancing age, which is consistent with previous reports.2 Interestingly, we found that in adolescent populations, the PVS occurs mostly in CSO but not in the BG region. In CSO, as shown from fiber orientation distribution analysis, the PVS is mainly located in crossing fiber regions with lower fiber density. However, In BG regions, the PVS occurs in deep GM nuclei (caudate, putamen) and major fiber tracts such as internal capsules or cortical spinal tracts, which are more densely packed compared to crossing-fibers in CSO. Previous studies have reported that the WM blood flow is inversely correlated with FA,5 the tightly structured fibers tend to show lower blood flow if compared to loosened ones. The high visibility of PVS in CSO may also be due to more loosened fiber structures, which lead to more axonal spaces for PVS fluid movement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信