从大气湍流扭曲的图像中检测运动目标

Ajinkya S. Deshmukh, S. Medasani, G. R. Reddy
{"title":"从大气湍流扭曲的图像中检测运动目标","authors":"Ajinkya S. Deshmukh, S. Medasani, G. R. Reddy","doi":"10.1109/ISSP.2013.6526887","DOIUrl":null,"url":null,"abstract":"Atmospheric turbulence degrades image with nonuniform geometric deformations and distortions, due to random fluctuations of refractive index over air media. Typical approaches to turbulence removal do not consider moving objects of interest. We propose a method that combines two independent approaches, non-rigid image registration and background subtraction using Gaussian mixture modeling (GMM), to detect moving objects in turbulent conditions. Nonrigid image registration removes geometric distortions and stabilizes overall scene. Then GMM based background subtraction technique is used to detect moving objects. We demonstrate robustness of our proposed approach under varying turbulence conditions using qualitative and quantitative comparisons with existing methods.","PeriodicalId":354719,"journal":{"name":"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Moving object detection from images distorted by atmospheric turbulence\",\"authors\":\"Ajinkya S. Deshmukh, S. Medasani, G. R. Reddy\",\"doi\":\"10.1109/ISSP.2013.6526887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atmospheric turbulence degrades image with nonuniform geometric deformations and distortions, due to random fluctuations of refractive index over air media. Typical approaches to turbulence removal do not consider moving objects of interest. We propose a method that combines two independent approaches, non-rigid image registration and background subtraction using Gaussian mixture modeling (GMM), to detect moving objects in turbulent conditions. Nonrigid image registration removes geometric distortions and stabilizes overall scene. Then GMM based background subtraction technique is used to detect moving objects. We demonstrate robustness of our proposed approach under varying turbulence conditions using qualitative and quantitative comparisons with existing methods.\",\"PeriodicalId\":354719,\"journal\":{\"name\":\"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSP.2013.6526887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Intelligent Systems and Signal Processing (ISSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSP.2013.6526887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

由于空气介质上折射率的随机波动,大气湍流使图像产生不均匀的几何变形和畸变。消除湍流的典型方法不考虑感兴趣的移动物体。我们提出了一种结合非刚性图像配准和背景相减两种独立方法的方法,利用高斯混合建模(GMM)来检测湍流条件下的运动物体。非刚性图像配准消除几何畸变并稳定整个场景。然后利用基于GMM的背景相减技术检测运动目标。我们通过与现有方法的定性和定量比较,证明了我们提出的方法在不同湍流条件下的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moving object detection from images distorted by atmospheric turbulence
Atmospheric turbulence degrades image with nonuniform geometric deformations and distortions, due to random fluctuations of refractive index over air media. Typical approaches to turbulence removal do not consider moving objects of interest. We propose a method that combines two independent approaches, non-rigid image registration and background subtraction using Gaussian mixture modeling (GMM), to detect moving objects in turbulent conditions. Nonrigid image registration removes geometric distortions and stabilizes overall scene. Then GMM based background subtraction technique is used to detect moving objects. We demonstrate robustness of our proposed approach under varying turbulence conditions using qualitative and quantitative comparisons with existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信