时变征费程序及期权定价

P. Carr, Liuren Wu
{"title":"时变征费程序及期权定价","authors":"P. Carr, Liuren Wu","doi":"10.2139/ssrn.283999","DOIUrl":null,"url":null,"abstract":"We apply stochastic time change to Levy processes to generate a wide variety of tractable option pricing models. In particular, we prove a fundamental theorem that transforms the characteristic function of the time-changed Levy process into the Laplace transform of the stochastic time under appropriate measure change. We extend the traditional measure theory into the complex domain and define the measure change by a class of complex valued exponential martingales. We provide extensive examples to illustrate its applications and its link to existing models in the literature.","PeriodicalId":433580,"journal":{"name":"Baruch: Finance (Topic)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Time-Changed Levy Process and Option Pricing\",\"authors\":\"P. Carr, Liuren Wu\",\"doi\":\"10.2139/ssrn.283999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply stochastic time change to Levy processes to generate a wide variety of tractable option pricing models. In particular, we prove a fundamental theorem that transforms the characteristic function of the time-changed Levy process into the Laplace transform of the stochastic time under appropriate measure change. We extend the traditional measure theory into the complex domain and define the measure change by a class of complex valued exponential martingales. We provide extensive examples to illustrate its applications and its link to existing models in the literature.\",\"PeriodicalId\":433580,\"journal\":{\"name\":\"Baruch: Finance (Topic)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baruch: Finance (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.283999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baruch: Finance (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.283999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们将随机时间变化应用于Levy过程,以产生各种可处理的期权定价模型。特别地,我们证明了在适当的测度变化下,将时变Levy过程的特征函数转化为随机时间的拉普拉斯变换的一个基本定理。将传统测度理论推广到复域,用一类复值指数鞅来定义测度变化。我们提供了大量的例子来说明其应用及其与文献中现有模型的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-Changed Levy Process and Option Pricing
We apply stochastic time change to Levy processes to generate a wide variety of tractable option pricing models. In particular, we prove a fundamental theorem that transforms the characteristic function of the time-changed Levy process into the Laplace transform of the stochastic time under appropriate measure change. We extend the traditional measure theory into the complex domain and define the measure change by a class of complex valued exponential martingales. We provide extensive examples to illustrate its applications and its link to existing models in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信