基于多空间数据和系统参数的学习路径损失估计

Kazuya Inoue, Keita Imaizumi, K. Ichige, Tatsuya Nagao, Takahiro Hayashi
{"title":"基于多空间数据和系统参数的学习路径损失估计","authors":"Kazuya Inoue, Keita Imaizumi, K. Ichige, Tatsuya Nagao, Takahiro Hayashi","doi":"10.1109/VTC2022-Fall57202.2022.10012870","DOIUrl":null,"url":null,"abstract":"We propose a novel path loss estimation method based on deep learning with some newly defined system parameters and images. Estimating the radio wave propagation environment is one of the key techniques for indoor/outdoor high-speed wireless communication. The radio wave propagation environment is basically a multipath environment, and path loss characteristics should be estimated under various environments. The authors have already proposed path loss estimation methods based on machine learning and spatial image data. The purpose of this paper is to further enhance the path loss estimation accuracy by appropriately selecting the input parameters and the CNN/FNN model structure.","PeriodicalId":326047,"journal":{"name":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning-Based Path Loss Estimation Using Multiple Spatial Data and System Parameters\",\"authors\":\"Kazuya Inoue, Keita Imaizumi, K. Ichige, Tatsuya Nagao, Takahiro Hayashi\",\"doi\":\"10.1109/VTC2022-Fall57202.2022.10012870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel path loss estimation method based on deep learning with some newly defined system parameters and images. Estimating the radio wave propagation environment is one of the key techniques for indoor/outdoor high-speed wireless communication. The radio wave propagation environment is basically a multipath environment, and path loss characteristics should be estimated under various environments. The authors have already proposed path loss estimation methods based on machine learning and spatial image data. The purpose of this paper is to further enhance the path loss estimation accuracy by appropriately selecting the input parameters and the CNN/FNN model structure.\",\"PeriodicalId\":326047,\"journal\":{\"name\":\"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTC2022-Fall57202.2022.10012870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2022-Fall57202.2022.10012870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的基于深度学习的路径损失估计方法,该方法使用了一些新定义的系统参数和图像。无线电波传播环境估计是实现室内/室外高速无线通信的关键技术之一。无线电波的传播环境基本上是一个多径环境,需要估计各种环境下的路径损耗特性。作者已经提出了基于机器学习和空间图像数据的路径损失估计方法。本文的目的是通过适当选择输入参数和CNN/FNN模型结构,进一步提高路径损失估计的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning-Based Path Loss Estimation Using Multiple Spatial Data and System Parameters
We propose a novel path loss estimation method based on deep learning with some newly defined system parameters and images. Estimating the radio wave propagation environment is one of the key techniques for indoor/outdoor high-speed wireless communication. The radio wave propagation environment is basically a multipath environment, and path loss characteristics should be estimated under various environments. The authors have already proposed path loss estimation methods based on machine learning and spatial image data. The purpose of this paper is to further enhance the path loss estimation accuracy by appropriately selecting the input parameters and the CNN/FNN model structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信