工作中的可实现性:分离两个建设性的有限性概念

M. Bezem, T. Coquand, Keiko Nakata, Erik Parmann
{"title":"工作中的可实现性:分离两个建设性的有限性概念","authors":"M. Bezem, T. Coquand, Keiko Nakata, Erik Parmann","doi":"10.4230/LIPIcs.TYPES.2016.6","DOIUrl":null,"url":null,"abstract":"We elaborate in detail a realizability model for Martin-Löf dependent type theory with the purpose to analyze a subtle distinction between two constructive notions of finiteness of a set A. The two notions are: (1) A is Noetherian: the empty list can be constructed from lists over A containing duplicates by a certain inductive shortening process; (2) A is streamless: every enumeration of A contains a duplicate. 2012 ACM Subject Classification Theory of computation → Type theory, Theory of computation → Constructive mathematics","PeriodicalId":131421,"journal":{"name":"Types for Proofs and Programs","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realizability at Work: Separating Two Constructive Notions of Finiteness\",\"authors\":\"M. Bezem, T. Coquand, Keiko Nakata, Erik Parmann\",\"doi\":\"10.4230/LIPIcs.TYPES.2016.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We elaborate in detail a realizability model for Martin-Löf dependent type theory with the purpose to analyze a subtle distinction between two constructive notions of finiteness of a set A. The two notions are: (1) A is Noetherian: the empty list can be constructed from lists over A containing duplicates by a certain inductive shortening process; (2) A is streamless: every enumeration of A contains a duplicate. 2012 ACM Subject Classification Theory of computation → Type theory, Theory of computation → Constructive mathematics\",\"PeriodicalId\":131421,\"journal\":{\"name\":\"Types for Proofs and Programs\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Types for Proofs and Programs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.TYPES.2016.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Types for Proofs and Programs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TYPES.2016.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文详细阐述了Martin-Löf依赖类型论的可实现性模型,目的是分析集合a有限性的两个构造概念之间的微妙区别,这两个概念是:(1)a是noether的:通过一定的归纳缩短过程,a上包含重复项的列表可以构造空列表;(2) A是无流的:A的每个枚举都包含一个副本。2012 ACM学科分类:计算理论→类型论、计算理论→构造数学
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realizability at Work: Separating Two Constructive Notions of Finiteness
We elaborate in detail a realizability model for Martin-Löf dependent type theory with the purpose to analyze a subtle distinction between two constructive notions of finiteness of a set A. The two notions are: (1) A is Noetherian: the empty list can be constructed from lists over A containing duplicates by a certain inductive shortening process; (2) A is streamless: every enumeration of A contains a duplicate. 2012 ACM Subject Classification Theory of computation → Type theory, Theory of computation → Constructive mathematics
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信