霍克斯过程多武装土匪搜索和救援

Wen-Hao Chiang, G. Mohler
{"title":"霍克斯过程多武装土匪搜索和救援","authors":"Wen-Hao Chiang, G. Mohler","doi":"10.1109/ICMLA55696.2022.00046","DOIUrl":null,"url":null,"abstract":"We propose a novel framework for integrating Hawkes processes with multi-armed bandit algorithms to solve spatio-temporal event forecasting and detection problems when data may be undersampled or spatially biased. In particular, we introduce an upper confidence bound algorithm using Bayesian spatial Hawkes process estimation for balancing the trade-off between exploiting geographic regions where data has been collected and exploring geographic regions where data is unobserved. We first validate our model using simulated data. We then apply it to the problem of disaster search and rescue using calls for service data from hurricane Harvey in 2017 and the problem of detection and clearance of improvised explosive devices (IEDs) using IED attack records in Iraq. Our model outperforms state-of-the-art baseline spatial MAB algorithms in terms of cumulative reward and several other ranking evaluation metrics.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hawkes Process Multi-armed Bandits for Search and Rescue\",\"authors\":\"Wen-Hao Chiang, G. Mohler\",\"doi\":\"10.1109/ICMLA55696.2022.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel framework for integrating Hawkes processes with multi-armed bandit algorithms to solve spatio-temporal event forecasting and detection problems when data may be undersampled or spatially biased. In particular, we introduce an upper confidence bound algorithm using Bayesian spatial Hawkes process estimation for balancing the trade-off between exploiting geographic regions where data has been collected and exploring geographic regions where data is unobserved. We first validate our model using simulated data. We then apply it to the problem of disaster search and rescue using calls for service data from hurricane Harvey in 2017 and the problem of detection and clearance of improvised explosive devices (IEDs) using IED attack records in Iraq. Our model outperforms state-of-the-art baseline spatial MAB algorithms in terms of cumulative reward and several other ranking evaluation metrics.\",\"PeriodicalId\":128160,\"journal\":{\"name\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA55696.2022.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个新的框架,将Hawkes过程与多臂强盗算法相结合,以解决数据可能采样不足或空间偏差时的时空事件预测和检测问题。特别地,我们引入了一种使用贝叶斯空间霍克斯过程估计的上置信度界算法,以平衡利用已收集数据的地理区域和探索未观测到数据的地理区域之间的权衡。我们首先使用模拟数据验证我们的模型。然后,我们使用2017年哈维飓风的服务数据呼叫将其应用于灾难搜索和救援问题,以及使用伊拉克简易爆炸装置袭击记录检测和清除简易爆炸装置(IED)的问题。我们的模型在累积奖励和其他几个排名评估指标方面优于最先进的基线空间MAB算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hawkes Process Multi-armed Bandits for Search and Rescue
We propose a novel framework for integrating Hawkes processes with multi-armed bandit algorithms to solve spatio-temporal event forecasting and detection problems when data may be undersampled or spatially biased. In particular, we introduce an upper confidence bound algorithm using Bayesian spatial Hawkes process estimation for balancing the trade-off between exploiting geographic regions where data has been collected and exploring geographic regions where data is unobserved. We first validate our model using simulated data. We then apply it to the problem of disaster search and rescue using calls for service data from hurricane Harvey in 2017 and the problem of detection and clearance of improvised explosive devices (IEDs) using IED attack records in Iraq. Our model outperforms state-of-the-art baseline spatial MAB algorithms in terms of cumulative reward and several other ranking evaluation metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信