动态核心扩展:在DVFS之外权衡性能和能量

Wei Zhang, Hang Zhang, J. Lach
{"title":"动态核心扩展:在DVFS之外权衡性能和能量","authors":"Wei Zhang, Hang Zhang, J. Lach","doi":"10.1109/ICCD.2015.7357120","DOIUrl":null,"url":null,"abstract":"Dynamic voltage and frequency scaling (DVFS) is commonly employed on modern superscalar processors to reduce energy when peak performance is not needed or allowed. As technology scales, the effectiveness of DVFS is limited by the shrinking viable supply voltage range. This work proposes dynamic core scaling (DCS) to extend performance-energy tradeoff capabilities in superscalar processors. DCS ensures that programs run at a given percentage of their maximum speed and, at the same time, minimizes energy consumption by dynamically adjusting the active superscalar datapath resources. Evaluations using an 8-way superscalar processor implemented on 45nm circuit infrastructure show that DCS is more effective in performance-energy tradeoffs than DVFS at the high performance end. When used together with DVFS, DCS saves an additional 20% of a full-size core's energy on average. At the minimum operating voltage, DVFS stops reducing energy, while DCS is still able to achieve an average of 46% further energy reduction.","PeriodicalId":129506,"journal":{"name":"2015 33rd IEEE International Conference on Computer Design (ICCD)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dynamic core scaling: Trading off performance and energy beyond DVFS\",\"authors\":\"Wei Zhang, Hang Zhang, J. Lach\",\"doi\":\"10.1109/ICCD.2015.7357120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic voltage and frequency scaling (DVFS) is commonly employed on modern superscalar processors to reduce energy when peak performance is not needed or allowed. As technology scales, the effectiveness of DVFS is limited by the shrinking viable supply voltage range. This work proposes dynamic core scaling (DCS) to extend performance-energy tradeoff capabilities in superscalar processors. DCS ensures that programs run at a given percentage of their maximum speed and, at the same time, minimizes energy consumption by dynamically adjusting the active superscalar datapath resources. Evaluations using an 8-way superscalar processor implemented on 45nm circuit infrastructure show that DCS is more effective in performance-energy tradeoffs than DVFS at the high performance end. When used together with DVFS, DCS saves an additional 20% of a full-size core's energy on average. At the minimum operating voltage, DVFS stops reducing energy, while DCS is still able to achieve an average of 46% further energy reduction.\",\"PeriodicalId\":129506,\"journal\":{\"name\":\"2015 33rd IEEE International Conference on Computer Design (ICCD)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 33rd IEEE International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2015.7357120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 33rd IEEE International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2015.7357120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

动态电压和频率缩放(DVFS)通常用于现代超标量处理器,以在不需要或不允许峰值性能时降低能量。随着技术规模的扩大,DVFS的有效性受到可行电源电压范围缩小的限制。这项工作提出了动态核心缩放(DCS),以扩展在超标量处理器的性能-能量权衡能力。DCS确保程序以其最大速度的给定百分比运行,同时通过动态调整活动超标量数据路径资源来最小化能耗。使用在45nm电路基础设施上实现的8路超标量处理器的评估表明,在高性能端,DCS比DVFS更有效地进行性能-能量权衡。当与DVFS一起使用时,DCS平均节省了全尺寸核心20%的能源。在最低工作电压下,DVFS停止降低能耗,而DCS仍然能够实现平均46%的进一步节能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic core scaling: Trading off performance and energy beyond DVFS
Dynamic voltage and frequency scaling (DVFS) is commonly employed on modern superscalar processors to reduce energy when peak performance is not needed or allowed. As technology scales, the effectiveness of DVFS is limited by the shrinking viable supply voltage range. This work proposes dynamic core scaling (DCS) to extend performance-energy tradeoff capabilities in superscalar processors. DCS ensures that programs run at a given percentage of their maximum speed and, at the same time, minimizes energy consumption by dynamically adjusting the active superscalar datapath resources. Evaluations using an 8-way superscalar processor implemented on 45nm circuit infrastructure show that DCS is more effective in performance-energy tradeoffs than DVFS at the high performance end. When used together with DVFS, DCS saves an additional 20% of a full-size core's energy on average. At the minimum operating voltage, DVFS stops reducing energy, while DCS is still able to achieve an average of 46% further energy reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信