基于动态BP神经网络模型和ARMA模型的人民币汇率预测精度比较

Zhiqiang Ye, Xiang Ren, Yaling Shan
{"title":"基于动态BP神经网络模型和ARMA模型的人民币汇率预测精度比较","authors":"Zhiqiang Ye, Xiang Ren, Yaling Shan","doi":"10.4172/2168-9458.1000161","DOIUrl":null,"url":null,"abstract":"This paper uses the dynamic back propagation (BP) neural network model and the autoregressive moving average (ARMA) model to forecast the RMB exchange rate based on the data from January 1, 2011 to October 10, 2012. The results show that the dynamic BP neural network model works better than the ARMA model in evaluating both the trend and the deviation of RMB exchange rate.","PeriodicalId":315937,"journal":{"name":"Journal of Stock & Forex Trading","volume":"66 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparing RMB Exchange Rate Forecasting Accuracy based on Dynamic BP Neural Network Model and the ARMA Model\",\"authors\":\"Zhiqiang Ye, Xiang Ren, Yaling Shan\",\"doi\":\"10.4172/2168-9458.1000161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses the dynamic back propagation (BP) neural network model and the autoregressive moving average (ARMA) model to forecast the RMB exchange rate based on the data from January 1, 2011 to October 10, 2012. The results show that the dynamic BP neural network model works better than the ARMA model in evaluating both the trend and the deviation of RMB exchange rate.\",\"PeriodicalId\":315937,\"journal\":{\"name\":\"Journal of Stock & Forex Trading\",\"volume\":\"66 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stock & Forex Trading\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9458.1000161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stock & Forex Trading","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9458.1000161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文基于2011年1月1日至2012年10月10日的数据,采用动态反向传播(BP)神经网络模型和自回归移动平均(ARMA)模型对人民币汇率进行预测。结果表明,动态BP神经网络模型在评估人民币汇率走势和偏差方面都优于ARMA模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing RMB Exchange Rate Forecasting Accuracy based on Dynamic BP Neural Network Model and the ARMA Model
This paper uses the dynamic back propagation (BP) neural network model and the autoregressive moving average (ARMA) model to forecast the RMB exchange rate based on the data from January 1, 2011 to October 10, 2012. The results show that the dynamic BP neural network model works better than the ARMA model in evaluating both the trend and the deviation of RMB exchange rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信