优化DBN有效增强超声图像与盆腔病变

Sadanand L. Shelgaonkar, A. Nandgaonkar
{"title":"优化DBN有效增强超声图像与盆腔病变","authors":"Sadanand L. Shelgaonkar, A. Nandgaonkar","doi":"10.1504/IJMEI.2019.10023200","DOIUrl":null,"url":null,"abstract":"Nowadays, the ultrasound modality is the current research areas for lesion analysis. Hence, this paper adopts an optimised deep belief neural (ODBN) network for enhancing the US image of pelvic portions. It considers the higher order and lower order statistical characteristics of the image to define the appropriate filter band for image enhancement. To optimise the lower order features, an advanced optimisation search algorithm named grey wolf optimiser algorithm (GWO) is exploited. The ODBN learns the optimised features and the noise characteristics for precise prediction of the filter bands, which enhance the image substantially over the conventional filter bands. The performance of the proposed method is compared with the conventional methods using the benchmark and real-time US images of pelvic lesions. The quality of enhancement is ensured using renowned measures namely PSNR and ESSIM that exhibit the performance of the proposed approach.","PeriodicalId":193362,"journal":{"name":"Int. J. Medical Eng. Informatics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimised DBN for effective enhancement of ultrasound images with pelvic lesions\",\"authors\":\"Sadanand L. Shelgaonkar, A. Nandgaonkar\",\"doi\":\"10.1504/IJMEI.2019.10023200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the ultrasound modality is the current research areas for lesion analysis. Hence, this paper adopts an optimised deep belief neural (ODBN) network for enhancing the US image of pelvic portions. It considers the higher order and lower order statistical characteristics of the image to define the appropriate filter band for image enhancement. To optimise the lower order features, an advanced optimisation search algorithm named grey wolf optimiser algorithm (GWO) is exploited. The ODBN learns the optimised features and the noise characteristics for precise prediction of the filter bands, which enhance the image substantially over the conventional filter bands. The performance of the proposed method is compared with the conventional methods using the benchmark and real-time US images of pelvic lesions. The quality of enhancement is ensured using renowned measures namely PSNR and ESSIM that exhibit the performance of the proposed approach.\",\"PeriodicalId\":193362,\"journal\":{\"name\":\"Int. J. Medical Eng. Informatics\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Medical Eng. Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMEI.2019.10023200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Medical Eng. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMEI.2019.10023200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超声模态是目前病变分析的研究热点。因此,本文采用优化后的深度信念神经网络(deep belief neural, ODBN)对骨盆部分的US图像进行增强。它考虑图像的高阶和低阶统计特性来定义适合图像增强的滤波器带。为了优化低阶特征,提出了一种先进的优化搜索算法——灰狼优化算法(GWO)。ODBN学习优化的特征和噪声特性,以精确预测滤波器带,这大大增强了图像比传统的滤波器带。采用骨盆病变的基准和实时US图像与传统方法进行了性能比较。增强的质量是确保使用著名的措施,即PSNR和ESSIM,展示了所提出的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimised DBN for effective enhancement of ultrasound images with pelvic lesions
Nowadays, the ultrasound modality is the current research areas for lesion analysis. Hence, this paper adopts an optimised deep belief neural (ODBN) network for enhancing the US image of pelvic portions. It considers the higher order and lower order statistical characteristics of the image to define the appropriate filter band for image enhancement. To optimise the lower order features, an advanced optimisation search algorithm named grey wolf optimiser algorithm (GWO) is exploited. The ODBN learns the optimised features and the noise characteristics for precise prediction of the filter bands, which enhance the image substantially over the conventional filter bands. The performance of the proposed method is compared with the conventional methods using the benchmark and real-time US images of pelvic lesions. The quality of enhancement is ensured using renowned measures namely PSNR and ESSIM that exhibit the performance of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信