基于支持向量机和句法模板的观点句提取方法

Bo Zhang, Yanquan Zhou, Yu Mao
{"title":"基于支持向量机和句法模板的观点句提取方法","authors":"Bo Zhang, Yanquan Zhou, Yu Mao","doi":"10.1109/NLPKE.2010.5587835","DOIUrl":null,"url":null,"abstract":"This paper presents a combined method of syntactic structure, dependency relation and SVM classifier to extract opinion sentences. At first, we use the syntactic structure templates with high confidence summarized artificially and the dependency relation templates with high precision obtained by a dependency relation extraction algorithm to tag sentences as opinion sentence. Then we input the remaining test data to a trained SVM classifier which is created by a rigorous process of feature selection. Eventually the combined method performed well, achieving 92.6% recall with 85.5% precision.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"29 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Extracting opinion sentence by combination of SVM and syntactic templates\",\"authors\":\"Bo Zhang, Yanquan Zhou, Yu Mao\",\"doi\":\"10.1109/NLPKE.2010.5587835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a combined method of syntactic structure, dependency relation and SVM classifier to extract opinion sentences. At first, we use the syntactic structure templates with high confidence summarized artificially and the dependency relation templates with high precision obtained by a dependency relation extraction algorithm to tag sentences as opinion sentence. Then we input the remaining test data to a trained SVM classifier which is created by a rigorous process of feature selection. Eventually the combined method performed well, achieving 92.6% recall with 85.5% precision.\",\"PeriodicalId\":259975,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"volume\":\"29 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NLPKE.2010.5587835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种结合句法结构、依赖关系和支持向量机分类器的观点句提取方法。首先,我们使用人工总结的高置信度句法结构模板和依赖关系提取算法获得的高精度依赖关系模板将句子标记为意见句。然后将剩余的测试数据输入到经过训练的SVM分类器中,该分类器通过严格的特征选择过程生成。最终,联合方法取得了良好的结果,召回率为92.6%,准确率为85.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting opinion sentence by combination of SVM and syntactic templates
This paper presents a combined method of syntactic structure, dependency relation and SVM classifier to extract opinion sentences. At first, we use the syntactic structure templates with high confidence summarized artificially and the dependency relation templates with high precision obtained by a dependency relation extraction algorithm to tag sentences as opinion sentence. Then we input the remaining test data to a trained SVM classifier which is created by a rigorous process of feature selection. Eventually the combined method performed well, achieving 92.6% recall with 85.5% precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信