{"title":"具有不确定运动学和动力学的机械臂双向遥操作系统控制","authors":"Yen‐Chen Liu","doi":"10.1109/CYBER.2014.6917518","DOIUrl":null,"url":null,"abstract":"The control problem for task-space bilateral teleoperation system with uncertain kinematics and dynamics is studied in this paper. We first demonstrate that based on the proposed controller and adaptive laws, the teleoperation system is stable and the position tracking in the task space is guaranteed when robots are in free motion or subject to passive force. Furthermore, if the human and environmental forces are bounded and square integrable, then all signals of the teleoperation system are bounded and the task-space tracking errors converge to zero asymptotically. The force reflection of the addressed bilateral teleoperation and the issue of communication delays are also studied in this paper. Numerical simulations are presented to validate the performance of the developed control algorithms.","PeriodicalId":183401,"journal":{"name":"The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Control of bilateral teleoperation system for robotic manipulators with uncertain kinematics and dynamics\",\"authors\":\"Yen‐Chen Liu\",\"doi\":\"10.1109/CYBER.2014.6917518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The control problem for task-space bilateral teleoperation system with uncertain kinematics and dynamics is studied in this paper. We first demonstrate that based on the proposed controller and adaptive laws, the teleoperation system is stable and the position tracking in the task space is guaranteed when robots are in free motion or subject to passive force. Furthermore, if the human and environmental forces are bounded and square integrable, then all signals of the teleoperation system are bounded and the task-space tracking errors converge to zero asymptotically. The force reflection of the addressed bilateral teleoperation and the issue of communication delays are also studied in this paper. Numerical simulations are presented to validate the performance of the developed control algorithms.\",\"PeriodicalId\":183401,\"journal\":{\"name\":\"The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBER.2014.6917518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBER.2014.6917518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control of bilateral teleoperation system for robotic manipulators with uncertain kinematics and dynamics
The control problem for task-space bilateral teleoperation system with uncertain kinematics and dynamics is studied in this paper. We first demonstrate that based on the proposed controller and adaptive laws, the teleoperation system is stable and the position tracking in the task space is guaranteed when robots are in free motion or subject to passive force. Furthermore, if the human and environmental forces are bounded and square integrable, then all signals of the teleoperation system are bounded and the task-space tracking errors converge to zero asymptotically. The force reflection of the addressed bilateral teleoperation and the issue of communication delays are also studied in this paper. Numerical simulations are presented to validate the performance of the developed control algorithms.