G. Pîrcălăbioru, Ariana Picu, Laura Petcu, M. Popa, M. Chifiriuc
{"title":"糖尿病、饮食和肠道微生物群之间的复杂关系","authors":"G. Pîrcălăbioru, Ariana Picu, Laura Petcu, M. Popa, M. Chifiriuc","doi":"10.5772/INTECHOPEN.70602","DOIUrl":null,"url":null,"abstract":"The most recent World Health Organization report revealed that the number of adults suffering from diabetes has almost quadrupled since 1980 to 422 million, thus drawing attention to the urgent need to step up prevention and treatment of this disease. This chronic ailment is often associated with serious complications such as increased risk of heart disease, stroke and kidney failure. In 2012 alone, diabetes lead to 1.5 million deaths. This dramatic rise is mainly due to the increased prevalence of type 2 diabetes and fac tors driving it include overweight and obesity. Novel studies in this area have advanced our understanding regarding the complex relationship between diet, gut microbiota and diabetes. Despite no clear microbiota signature is associated with diabetes, patients harbour a reduction of butyrate-producing species ( Faecalibacterium prausnitzii, Roseburia intestinalis) as well as an increase in opportunistic pathogens. Furthermore, the func tions of the gut microbiome (i.e., vitamin metabolism, transport of sugars, carbohydrate metabolism, short chain fatty acid (SCFA) synthesis, etc.) are also different in patients with type 2 diabetes, a fact that may significantly alter the course of disease. Diet is one of the most decisive factors that have an impact on the gut microbiome. Nutritional interventions using prebiotics (i.e., inulin-type fructans), polyphenols and arabinox - ylans have been employed for the treatment of diabetes. Besides the shifts produced by these dietary components in the microbiome composition, it is worth mentioning their impact on host physiology through modulation of gut peptide production and glucose metabolism. The information presented within this chapter summarizes the most recent advances in the study of the microbiome-diet-diabetes interplay and analyses how these novel findings can be used in order to establish new therapeutic approaches for those with diabetes. humans.","PeriodicalId":272705,"journal":{"name":"Pathophysiology - Altered Physiological States","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Intricate Relationship between Diabetes, Diet and the Gut Microbiota\",\"authors\":\"G. Pîrcălăbioru, Ariana Picu, Laura Petcu, M. Popa, M. Chifiriuc\",\"doi\":\"10.5772/INTECHOPEN.70602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most recent World Health Organization report revealed that the number of adults suffering from diabetes has almost quadrupled since 1980 to 422 million, thus drawing attention to the urgent need to step up prevention and treatment of this disease. This chronic ailment is often associated with serious complications such as increased risk of heart disease, stroke and kidney failure. In 2012 alone, diabetes lead to 1.5 million deaths. This dramatic rise is mainly due to the increased prevalence of type 2 diabetes and fac tors driving it include overweight and obesity. Novel studies in this area have advanced our understanding regarding the complex relationship between diet, gut microbiota and diabetes. Despite no clear microbiota signature is associated with diabetes, patients harbour a reduction of butyrate-producing species ( Faecalibacterium prausnitzii, Roseburia intestinalis) as well as an increase in opportunistic pathogens. Furthermore, the func tions of the gut microbiome (i.e., vitamin metabolism, transport of sugars, carbohydrate metabolism, short chain fatty acid (SCFA) synthesis, etc.) are also different in patients with type 2 diabetes, a fact that may significantly alter the course of disease. Diet is one of the most decisive factors that have an impact on the gut microbiome. Nutritional interventions using prebiotics (i.e., inulin-type fructans), polyphenols and arabinox - ylans have been employed for the treatment of diabetes. Besides the shifts produced by these dietary components in the microbiome composition, it is worth mentioning their impact on host physiology through modulation of gut peptide production and glucose metabolism. The information presented within this chapter summarizes the most recent advances in the study of the microbiome-diet-diabetes interplay and analyses how these novel findings can be used in order to establish new therapeutic approaches for those with diabetes. humans.\",\"PeriodicalId\":272705,\"journal\":{\"name\":\"Pathophysiology - Altered Physiological States\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathophysiology - Altered Physiological States\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.70602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathophysiology - Altered Physiological States","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.70602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Intricate Relationship between Diabetes, Diet and the Gut Microbiota
The most recent World Health Organization report revealed that the number of adults suffering from diabetes has almost quadrupled since 1980 to 422 million, thus drawing attention to the urgent need to step up prevention and treatment of this disease. This chronic ailment is often associated with serious complications such as increased risk of heart disease, stroke and kidney failure. In 2012 alone, diabetes lead to 1.5 million deaths. This dramatic rise is mainly due to the increased prevalence of type 2 diabetes and fac tors driving it include overweight and obesity. Novel studies in this area have advanced our understanding regarding the complex relationship between diet, gut microbiota and diabetes. Despite no clear microbiota signature is associated with diabetes, patients harbour a reduction of butyrate-producing species ( Faecalibacterium prausnitzii, Roseburia intestinalis) as well as an increase in opportunistic pathogens. Furthermore, the func tions of the gut microbiome (i.e., vitamin metabolism, transport of sugars, carbohydrate metabolism, short chain fatty acid (SCFA) synthesis, etc.) are also different in patients with type 2 diabetes, a fact that may significantly alter the course of disease. Diet is one of the most decisive factors that have an impact on the gut microbiome. Nutritional interventions using prebiotics (i.e., inulin-type fructans), polyphenols and arabinox - ylans have been employed for the treatment of diabetes. Besides the shifts produced by these dietary components in the microbiome composition, it is worth mentioning their impact on host physiology through modulation of gut peptide production and glucose metabolism. The information presented within this chapter summarizes the most recent advances in the study of the microbiome-diet-diabetes interplay and analyses how these novel findings can be used in order to establish new therapeutic approaches for those with diabetes. humans.