一种基于电热v形执行器的测力微系统

Phạm Hồng Phúc
{"title":"一种基于电热v形执行器的测力微系统","authors":"Phạm Hồng Phúc","doi":"10.15625/0866-7136/14823","DOIUrl":null,"url":null,"abstract":"This paper describes design and calculation of an electrothermal V-shaped actuator (EVA) and an amplification mechanism integrated into a force measuring microsystem (FMMS), aims to apply for characterization of a micro beam. Displacement and driving force are generated by thermal expansion of the V-shaped silicon beams while applying a voltage to the electrodes of the EVA. ANSYS simulation helps to find out the relations between thermal force and displacement corresponding to driving voltage and determine the temperature of V-shaped beam at various applying voltages. In our simulation, with applying voltage Um = 38 volt for six pairs of V-shaped beam, the maximal temperature of the beam reaches approximately to 1100°C and causes a melting phenomenon of the silicon beam. The additional amplification mechanism allows actuator’s displacement to be 6 times larger than before the improvement, thus the bending deformation of the micro beam can be seen perfectly, i.e. the force loading on the beam can be computed more exactly via a measured displacement of the beam tip. In addition, this FMMS has smaller size and supplies a larger beam’s deformation at the same voltage in comparison with previous design.","PeriodicalId":239329,"journal":{"name":"Vietnam Journal of Mechanics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A force measuring microsystem bases on electrothermal V-shaped actuator\",\"authors\":\"Phạm Hồng Phúc\",\"doi\":\"10.15625/0866-7136/14823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes design and calculation of an electrothermal V-shaped actuator (EVA) and an amplification mechanism integrated into a force measuring microsystem (FMMS), aims to apply for characterization of a micro beam. Displacement and driving force are generated by thermal expansion of the V-shaped silicon beams while applying a voltage to the electrodes of the EVA. ANSYS simulation helps to find out the relations between thermal force and displacement corresponding to driving voltage and determine the temperature of V-shaped beam at various applying voltages. In our simulation, with applying voltage Um = 38 volt for six pairs of V-shaped beam, the maximal temperature of the beam reaches approximately to 1100°C and causes a melting phenomenon of the silicon beam. The additional amplification mechanism allows actuator’s displacement to be 6 times larger than before the improvement, thus the bending deformation of the micro beam can be seen perfectly, i.e. the force loading on the beam can be computed more exactly via a measured displacement of the beam tip. In addition, this FMMS has smaller size and supplies a larger beam’s deformation at the same voltage in comparison with previous design.\",\"PeriodicalId\":239329,\"journal\":{\"name\":\"Vietnam Journal of Mechanics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/0866-7136/14823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0866-7136/14823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了集成在力测量微系统(FMMS)中的电热v形致动器(EVA)和放大机构的设计与计算,旨在应用于微光束的表征。位移和驱动力是由v形硅梁的热膨胀产生的,同时对EVA的电极施加电压。ANSYS仿真有助于找出驱动电压对应的热力与位移之间的关系,确定不同施加电压下v形梁的温度。在我们的模拟中,当施加电压Um = 38伏时,6对v型梁的最高温度达到约1100℃,并导致硅梁熔化现象。增加的放大机构使执行器的位移比改进前大6倍,从而可以很好地看到微梁的弯曲变形,即通过测量梁尖端的位移可以更精确地计算出梁上的力载荷。此外,与以前的设计相比,该FMMS具有更小的尺寸和在相同电压下提供更大的梁变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A force measuring microsystem bases on electrothermal V-shaped actuator
This paper describes design and calculation of an electrothermal V-shaped actuator (EVA) and an amplification mechanism integrated into a force measuring microsystem (FMMS), aims to apply for characterization of a micro beam. Displacement and driving force are generated by thermal expansion of the V-shaped silicon beams while applying a voltage to the electrodes of the EVA. ANSYS simulation helps to find out the relations between thermal force and displacement corresponding to driving voltage and determine the temperature of V-shaped beam at various applying voltages. In our simulation, with applying voltage Um = 38 volt for six pairs of V-shaped beam, the maximal temperature of the beam reaches approximately to 1100°C and causes a melting phenomenon of the silicon beam. The additional amplification mechanism allows actuator’s displacement to be 6 times larger than before the improvement, thus the bending deformation of the micro beam can be seen perfectly, i.e. the force loading on the beam can be computed more exactly via a measured displacement of the beam tip. In addition, this FMMS has smaller size and supplies a larger beam’s deformation at the same voltage in comparison with previous design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信