以基因预测为例理解离散分类器

M. Subianto, A. Siebes
{"title":"以基因预测为例理解离散分类器","authors":"M. Subianto, A. Siebes","doi":"10.1109/ICDM.2007.40","DOIUrl":null,"url":null,"abstract":"The requirement that the models resulting from data mining should be understandable is an uncontroversial requirement. In the data mining literature, however, it plays hardly any role, if at all. In practice, though, understandability is often even more important than, e.g., accuracy. Understandability does not mean that models should be simple. It means that one should be able to understand the predictions of models. In this paper we introduce tools to understand arbitrary classifiers defined on discrete data. More in particular, we introduce Explanations that provide insight at a local level. They explain why a classifier classifies a data point as it does. For global insight, we introduce attribute weights. The higher the weight of an attribute, the more often it is decisive in the classification of a data point. To illustrate our tools, we describe a case study in the prediction of small genes. This is a notoriously hard problem in bioinformatics.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Understanding Discrete Classifiers with a Case Study in Gene Prediction\",\"authors\":\"M. Subianto, A. Siebes\",\"doi\":\"10.1109/ICDM.2007.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The requirement that the models resulting from data mining should be understandable is an uncontroversial requirement. In the data mining literature, however, it plays hardly any role, if at all. In practice, though, understandability is often even more important than, e.g., accuracy. Understandability does not mean that models should be simple. It means that one should be able to understand the predictions of models. In this paper we introduce tools to understand arbitrary classifiers defined on discrete data. More in particular, we introduce Explanations that provide insight at a local level. They explain why a classifier classifies a data point as it does. For global insight, we introduce attribute weights. The higher the weight of an attribute, the more often it is decisive in the classification of a data point. To illustrate our tools, we describe a case study in the prediction of small genes. This is a notoriously hard problem in bioinformatics.\",\"PeriodicalId\":233758,\"journal\":{\"name\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2007.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

数据挖掘产生的模型应该是可理解的,这是一个没有争议的需求。然而,在数据挖掘文献中,它几乎没有任何作用,如果有的话。然而,在实践中,可理解性往往比准确性更重要。可理解性并不意味着模型应该简单。这意味着人们应该能够理解模型的预测。在本文中,我们引入了一些工具来理解定义在离散数据上的任意分类器。更具体地说,我们将介绍在局部级别上提供洞察力的解释。它们解释了分类器对数据点进行分类的原因。为了获得全局洞察力,我们引入了属性权重。属性的权重越高,它在数据点的分类中就越具有决定性。为了说明我们的工具,我们描述了一个预测小基因的案例研究。这是生物信息学中出了名的难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding Discrete Classifiers with a Case Study in Gene Prediction
The requirement that the models resulting from data mining should be understandable is an uncontroversial requirement. In the data mining literature, however, it plays hardly any role, if at all. In practice, though, understandability is often even more important than, e.g., accuracy. Understandability does not mean that models should be simple. It means that one should be able to understand the predictions of models. In this paper we introduce tools to understand arbitrary classifiers defined on discrete data. More in particular, we introduce Explanations that provide insight at a local level. They explain why a classifier classifies a data point as it does. For global insight, we introduce attribute weights. The higher the weight of an attribute, the more often it is decisive in the classification of a data point. To illustrate our tools, we describe a case study in the prediction of small genes. This is a notoriously hard problem in bioinformatics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信