冯诺依曼规则、分裂性和初等元胞自动机

Ville Salo
{"title":"冯诺依曼规则、分裂性和初等元胞自动机","authors":"Ville Salo","doi":"10.4230/OASIcs.AUTOMATA.2021.11","DOIUrl":null,"url":null,"abstract":"We show that a cellular automaton on a mixing subshift of finite type is a Von Neumann regular element in the semigroup of cellular automata if and only if it is split epic onto its image in the category of sofic shifts and block maps. It follows from [S.-T\\\"orm\\\"a, 2015] that Von Neumann regularity is decidable condition, and we decide it for all elementary CA.","PeriodicalId":124625,"journal":{"name":"International Workshop on Cellular Automata and Discrete Complex Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Von Neumann regularity, split epicness and elementary cellular automata\",\"authors\":\"Ville Salo\",\"doi\":\"10.4230/OASIcs.AUTOMATA.2021.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a cellular automaton on a mixing subshift of finite type is a Von Neumann regular element in the semigroup of cellular automata if and only if it is split epic onto its image in the category of sofic shifts and block maps. It follows from [S.-T\\\\\\\"orm\\\\\\\"a, 2015] that Von Neumann regularity is decidable condition, and we decide it for all elementary CA.\",\"PeriodicalId\":124625,\"journal\":{\"name\":\"International Workshop on Cellular Automata and Discrete Complex Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Cellular Automata and Discrete Complex Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/OASIcs.AUTOMATA.2021.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Cellular Automata and Discrete Complex Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.AUTOMATA.2021.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了有限型混合子位移上的元胞自动机是元胞自动机半群中的Von Neumann正则元素,当且仅当它被分割成其在微位移和块映射范畴内的像。它由[S.][t \"orm\"a, 2015]认为Von Neumann正则性是可判定的条件,并对所有初级CA判定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Von Neumann regularity, split epicness and elementary cellular automata
We show that a cellular automaton on a mixing subshift of finite type is a Von Neumann regular element in the semigroup of cellular automata if and only if it is split epic onto its image in the category of sofic shifts and block maps. It follows from [S.-T\"orm\"a, 2015] that Von Neumann regularity is decidable condition, and we decide it for all elementary CA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信