格上的蛋白质折叠:一种整数规划方法

V. Chandru, M. Rao, G. Swaminathan
{"title":"格上的蛋白质折叠:一种整数规划方法","authors":"V. Chandru, M. Rao, G. Swaminathan","doi":"10.2139/SSRN.2154543","DOIUrl":null,"url":null,"abstract":"In this paper, we initiate the study of the protein folding problem from an integer linear programming perspective. The particular variant of protein folding that we examine is known as the hydrophobic-hydrophilic (HP) model of protein folding on the integer lattice. This problem is known to be NP-hard and also maxSNP-hard. We examine various alternate formulations for the planar version of this problem and present some preliminary computational results. Hopefully, this sets the stage for a polyhedral combinatorics assault on this important problem.","PeriodicalId":416196,"journal":{"name":"The Sharpest Cut","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Protein Folding on Lattices: An Integer Programming Approach\",\"authors\":\"V. Chandru, M. Rao, G. Swaminathan\",\"doi\":\"10.2139/SSRN.2154543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we initiate the study of the protein folding problem from an integer linear programming perspective. The particular variant of protein folding that we examine is known as the hydrophobic-hydrophilic (HP) model of protein folding on the integer lattice. This problem is known to be NP-hard and also maxSNP-hard. We examine various alternate formulations for the planar version of this problem and present some preliminary computational results. Hopefully, this sets the stage for a polyhedral combinatorics assault on this important problem.\",\"PeriodicalId\":416196,\"journal\":{\"name\":\"The Sharpest Cut\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Sharpest Cut\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/SSRN.2154543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Sharpest Cut","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.2154543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文从整数线性规划的角度出发,研究了蛋白质折叠问题。我们研究的蛋白质折叠的特殊变体被称为蛋白质在整数晶格上折叠的疏水-亲水性(HP)模型。这个问题被称为NP-hard和maxSNP-hard。我们研究了这个问题的平面版本的各种替代公式,并提出了一些初步的计算结果。希望这能为多面体组合学对这个重要问题的研究奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protein Folding on Lattices: An Integer Programming Approach
In this paper, we initiate the study of the protein folding problem from an integer linear programming perspective. The particular variant of protein folding that we examine is known as the hydrophobic-hydrophilic (HP) model of protein folding on the integer lattice. This problem is known to be NP-hard and also maxSNP-hard. We examine various alternate formulations for the planar version of this problem and present some preliminary computational results. Hopefully, this sets the stage for a polyhedral combinatorics assault on this important problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信