基于改进支持向量回归的农业经济评价

Min Huang
{"title":"基于改进支持向量回归的农业经济评价","authors":"Min Huang","doi":"10.1109/ICICTA.2015.38","DOIUrl":null,"url":null,"abstract":"The essence of agricultural project bid is a high-dimensional nonlinear space mathematical optimization problem. In order to improve the generalization performance of SVR algorithm, intelligent algorithm is used to train the SVR parameters, which can make the parameters of SVR optimal. The improved support vector regression evaluation model is applied to the bidding area of agricultural project. The success of some project in some agricultural company proves the reliability and enforceability of the model. The improved model reduces the influence of human factors to improve the objectivity and impartiality of evaluation results.","PeriodicalId":231694,"journal":{"name":"2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Agricultural Economic Evaluation Based on Improved Support Vector Regression\",\"authors\":\"Min Huang\",\"doi\":\"10.1109/ICICTA.2015.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The essence of agricultural project bid is a high-dimensional nonlinear space mathematical optimization problem. In order to improve the generalization performance of SVR algorithm, intelligent algorithm is used to train the SVR parameters, which can make the parameters of SVR optimal. The improved support vector regression evaluation model is applied to the bidding area of agricultural project. The success of some project in some agricultural company proves the reliability and enforceability of the model. The improved model reduces the influence of human factors to improve the objectivity and impartiality of evaluation results.\",\"PeriodicalId\":231694,\"journal\":{\"name\":\"2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICTA.2015.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICTA.2015.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

农业工程投标本质上是一个高维非线性空间数学优化问题。为了提高SVR算法的泛化性能,采用智能算法对SVR参数进行训练,使SVR参数达到最优。将改进的支持向量回归评价模型应用于农业项目招标区域。某农业公司项目的成功实践证明了该模型的可靠性和可执行性。改进后的模型减少了人为因素的影响,提高了评价结果的客观性和公正性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Agricultural Economic Evaluation Based on Improved Support Vector Regression
The essence of agricultural project bid is a high-dimensional nonlinear space mathematical optimization problem. In order to improve the generalization performance of SVR algorithm, intelligent algorithm is used to train the SVR parameters, which can make the parameters of SVR optimal. The improved support vector regression evaluation model is applied to the bidding area of agricultural project. The success of some project in some agricultural company proves the reliability and enforceability of the model. The improved model reduces the influence of human factors to improve the objectivity and impartiality of evaluation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信