带环路图中多故障诊断的改进最大积算法性能界

Tung Le, C. Hadjicostis
{"title":"带环路图中多故障诊断的改进最大积算法性能界","authors":"Tung Le, C. Hadjicostis","doi":"10.1109/ISIC.2008.4635957","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the performance of belief propagation max-product algorithms when used to solve the multiple fault diagnosis (MFD) problem. The MFD problem is described by a bipartite diagnosis graph (BDG) which consists of a set of components, a set of alarms, and a set of connections (or causal dependencies) between them, along with a set of parameters that describe the prior probabilities for component, alarm and connection failures. Given the alarm observations, our goal is to find the status of the components that has the maximum a posteriori (MAP) probability. By using properties of the max-product algorithm (MPA) and the sequential max-product algorithm (SMPA), we are able to analyze in this paper the performance of both algorithms with respect to the MAP solution (in terms of the probability of erroneous diagnosis). Our theoretical analysis indicates that the upper bounds in this paper are up to several orders of magnitude better than existing bounds, especially when the smallest loop size is an odd number. We also provide examples which demonstrate that our theoretical upper bounds match very well with simulation results.","PeriodicalId":342070,"journal":{"name":"2008 IEEE International Symposium on Intelligent Control","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved Performance Bounds on Max-Product Algorithms for Multiple Fault Diagnosis in Graphs with Loops\",\"authors\":\"Tung Le, C. Hadjicostis\",\"doi\":\"10.1109/ISIC.2008.4635957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze the performance of belief propagation max-product algorithms when used to solve the multiple fault diagnosis (MFD) problem. The MFD problem is described by a bipartite diagnosis graph (BDG) which consists of a set of components, a set of alarms, and a set of connections (or causal dependencies) between them, along with a set of parameters that describe the prior probabilities for component, alarm and connection failures. Given the alarm observations, our goal is to find the status of the components that has the maximum a posteriori (MAP) probability. By using properties of the max-product algorithm (MPA) and the sequential max-product algorithm (SMPA), we are able to analyze in this paper the performance of both algorithms with respect to the MAP solution (in terms of the probability of erroneous diagnosis). Our theoretical analysis indicates that the upper bounds in this paper are up to several orders of magnitude better than existing bounds, especially when the smallest loop size is an odd number. We also provide examples which demonstrate that our theoretical upper bounds match very well with simulation results.\",\"PeriodicalId\":342070,\"journal\":{\"name\":\"2008 IEEE International Symposium on Intelligent Control\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2008.4635957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2008.4635957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文分析了信念传播最大积算法在解决多故障诊断问题中的性能。MFD问题由二部诊断图(BDG)描述,该诊断图由一组组件、一组警报和它们之间的一组连接(或因果依赖关系)以及一组描述组件、警报和连接故障的先验概率的参数组成。给定报警观测值,我们的目标是找到具有最大后验概率(MAP)的组件的状态。利用最大积算法(MPA)和序列最大积算法(SMPA)的特性,我们能够分析这两种算法在MAP解方面的性能(根据错误诊断的概率)。我们的理论分析表明,本文的上界比现有的上界好几个数量级,特别是当最小的循环大小是奇数时。我们还提供了实例,证明了我们的理论上界与仿真结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Performance Bounds on Max-Product Algorithms for Multiple Fault Diagnosis in Graphs with Loops
In this paper, we analyze the performance of belief propagation max-product algorithms when used to solve the multiple fault diagnosis (MFD) problem. The MFD problem is described by a bipartite diagnosis graph (BDG) which consists of a set of components, a set of alarms, and a set of connections (or causal dependencies) between them, along with a set of parameters that describe the prior probabilities for component, alarm and connection failures. Given the alarm observations, our goal is to find the status of the components that has the maximum a posteriori (MAP) probability. By using properties of the max-product algorithm (MPA) and the sequential max-product algorithm (SMPA), we are able to analyze in this paper the performance of both algorithms with respect to the MAP solution (in terms of the probability of erroneous diagnosis). Our theoretical analysis indicates that the upper bounds in this paper are up to several orders of magnitude better than existing bounds, especially when the smallest loop size is an odd number. We also provide examples which demonstrate that our theoretical upper bounds match very well with simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信