辅助神经网络辅助机器学习EDFA增益模型

Jiachuan Lin, Xiang Lin, Zhiping Jiang
{"title":"辅助神经网络辅助机器学习EDFA增益模型","authors":"Jiachuan Lin, Xiang Lin, Zhiping Jiang","doi":"10.23919/OFC49934.2023.10117258","DOIUrl":null,"url":null,"abstract":"An enhanced EDFA model employing auxiliary neural networks is proposed. Adaptive to different devices, the model reduces the root mean square error from 0.04 to 0.02 dB with significantly less amount of training data.","PeriodicalId":355445,"journal":{"name":"2023 Optical Fiber Communications Conference and Exhibition (OFC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Auxiliary Neural Network Assisted Machine Learning EDFA Gain Model\",\"authors\":\"Jiachuan Lin, Xiang Lin, Zhiping Jiang\",\"doi\":\"10.23919/OFC49934.2023.10117258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An enhanced EDFA model employing auxiliary neural networks is proposed. Adaptive to different devices, the model reduces the root mean square error from 0.04 to 0.02 dB with significantly less amount of training data.\",\"PeriodicalId\":355445,\"journal\":{\"name\":\"2023 Optical Fiber Communications Conference and Exhibition (OFC)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Optical Fiber Communications Conference and Exhibition (OFC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/OFC49934.2023.10117258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Optical Fiber Communications Conference and Exhibition (OFC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OFC49934.2023.10117258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于辅助神经网络的增强EDFA模型。该模型自适应不同的设备,在显著减少训练数据量的情况下,将均方根误差从0.04降低到0.02 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auxiliary Neural Network Assisted Machine Learning EDFA Gain Model
An enhanced EDFA model employing auxiliary neural networks is proposed. Adaptive to different devices, the model reduces the root mean square error from 0.04 to 0.02 dB with significantly less amount of training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信