基于带宽参数变化的gini指数的核估计

K. Agbokou, Y. Mensah
{"title":"基于带宽参数变化的gini指数的核估计","authors":"K. Agbokou, Y. Mensah","doi":"10.37418/amsj.11.12.6","DOIUrl":null,"url":null,"abstract":"Most of the measures of income inequality are derived from the Lorenz curve, and many authors state that the Gini index is the best single measure of inequality. The present paper reviews some of the theorical properties of the Lorenz curve and provides a nonparametric estimate of the Gini index and the almost sure convergence of this estimate. And to confirm the performance of the estimator, an application on real data was carried out.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KERNEL’S ESTIMATION OF GINI INDEX BASED ON THE VARYING BANDWIDTH PARAMETER\",\"authors\":\"K. Agbokou, Y. Mensah\",\"doi\":\"10.37418/amsj.11.12.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the measures of income inequality are derived from the Lorenz curve, and many authors state that the Gini index is the best single measure of inequality. The present paper reviews some of the theorical properties of the Lorenz curve and provides a nonparametric estimate of the Gini index and the almost sure convergence of this estimate. And to confirm the performance of the estimator, an application on real data was carried out.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.11.12.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.11.12.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数衡量收入不平等的指标都来自洛伦兹曲线,许多作者认为基尼系数是衡量不平等的最佳单一指标。本文回顾了Lorenz曲线的一些理论性质,给出了Gini指数的一个非参数估计和这个估计的几乎肯定收敛性。为了验证该估计器的性能,在实际数据上进行了应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KERNEL’S ESTIMATION OF GINI INDEX BASED ON THE VARYING BANDWIDTH PARAMETER
Most of the measures of income inequality are derived from the Lorenz curve, and many authors state that the Gini index is the best single measure of inequality. The present paper reviews some of the theorical properties of the Lorenz curve and provides a nonparametric estimate of the Gini index and the almost sure convergence of this estimate. And to confirm the performance of the estimator, an application on real data was carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信