参数值函数近似:统一视图

M. Geist, O. Pietquin
{"title":"参数值函数近似:统一视图","authors":"M. Geist, O. Pietquin","doi":"10.1109/ADPRL.2011.5967355","DOIUrl":null,"url":null,"abstract":"Reinforcement learning (RL) is a machine learning answer to the optimal control problem. It consists of learning an optimal control policy through interactions with the system to be controlled, the quality of this policy being quantified by the so-called value function. An important RL subtopic is to approximate this function when the system is too large for an exact representation. This survey reviews and unifies state of the art methods for parametric value function approximation by grouping them into three main categories: bootstrapping, residuals and projected fixed-point approaches. Related algorithms are derived by considering one of the associated cost functions and a specific way to minimize it, almost always a stochastic gradient descent or a recursive least-squares approach.","PeriodicalId":406195,"journal":{"name":"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Parametric value function approximation: A unified view\",\"authors\":\"M. Geist, O. Pietquin\",\"doi\":\"10.1109/ADPRL.2011.5967355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforcement learning (RL) is a machine learning answer to the optimal control problem. It consists of learning an optimal control policy through interactions with the system to be controlled, the quality of this policy being quantified by the so-called value function. An important RL subtopic is to approximate this function when the system is too large for an exact representation. This survey reviews and unifies state of the art methods for parametric value function approximation by grouping them into three main categories: bootstrapping, residuals and projected fixed-point approaches. Related algorithms are derived by considering one of the associated cost functions and a specific way to minimize it, almost always a stochastic gradient descent or a recursive least-squares approach.\",\"PeriodicalId\":406195,\"journal\":{\"name\":\"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ADPRL.2011.5967355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADPRL.2011.5967355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

强化学习(RL)是解决最优控制问题的机器学习方法。它包括通过与被控制系统的交互来学习最优控制策略,该策略的质量通过所谓的价值函数来量化。一个重要的RL子主题是当系统太大而无法精确表示时近似该函数。本调查回顾并统一了参数值函数逼近的最新方法,将它们分为三大类:自举法、残差法和投影不动点法。相关算法是通过考虑一个相关的成本函数和最小化它的特定方法而衍生出来的,几乎总是随机梯度下降或递归最小二乘方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric value function approximation: A unified view
Reinforcement learning (RL) is a machine learning answer to the optimal control problem. It consists of learning an optimal control policy through interactions with the system to be controlled, the quality of this policy being quantified by the so-called value function. An important RL subtopic is to approximate this function when the system is too large for an exact representation. This survey reviews and unifies state of the art methods for parametric value function approximation by grouping them into three main categories: bootstrapping, residuals and projected fixed-point approaches. Related algorithms are derived by considering one of the associated cost functions and a specific way to minimize it, almost always a stochastic gradient descent or a recursive least-squares approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信