深度关联:基于端到端图学习的卷积图神经网络多目标跟踪

Cong Ma, Yuan Li, F. Yang, Ziwei Zhang, Yueqing Zhuang, Huizhu Jia, Xiaodong Xie
{"title":"深度关联:基于端到端图学习的卷积图神经网络多目标跟踪","authors":"Cong Ma, Yuan Li, F. Yang, Ziwei Zhang, Yueqing Zhuang, Huizhu Jia, Xiaodong Xie","doi":"10.1145/3323873.3325010","DOIUrl":null,"url":null,"abstract":"Multiple Object Tracking (MOT) has a wide range of applications in surveillance retrieval and autonomous driving. The majority of existing methods focus on extracting features by deep learning and hand-crafted optimizing bipartite graph or network flow. In this paper, we proposed an efficient end-to-end model, Deep Association Network (DAN), to learn the graph-based training data, which are constructed by spatial-temporal interaction of objects. DAN combines Convolutional Neural Network (CNN), Motion Encoder (ME) and Graph Neural Network (GNN). The CNNs and Motion Encoders extract appearance features from bounding box images and motion features from positions respectively, and then the GNN optimizes graph structure to associate the same object among frames together. In addition, we presented a novel end-to-end training strategy for Deep Association Network. Our experimental results demonstrate the effectiveness of DAN up to the state-of-the-art methods without extra-dataset on MOT16 and DukeMTMCT.","PeriodicalId":149041,"journal":{"name":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Deep Association: End-to-end Graph-Based Learning for Multiple Object Tracking with Conv-Graph Neural Network\",\"authors\":\"Cong Ma, Yuan Li, F. Yang, Ziwei Zhang, Yueqing Zhuang, Huizhu Jia, Xiaodong Xie\",\"doi\":\"10.1145/3323873.3325010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiple Object Tracking (MOT) has a wide range of applications in surveillance retrieval and autonomous driving. The majority of existing methods focus on extracting features by deep learning and hand-crafted optimizing bipartite graph or network flow. In this paper, we proposed an efficient end-to-end model, Deep Association Network (DAN), to learn the graph-based training data, which are constructed by spatial-temporal interaction of objects. DAN combines Convolutional Neural Network (CNN), Motion Encoder (ME) and Graph Neural Network (GNN). The CNNs and Motion Encoders extract appearance features from bounding box images and motion features from positions respectively, and then the GNN optimizes graph structure to associate the same object among frames together. In addition, we presented a novel end-to-end training strategy for Deep Association Network. Our experimental results demonstrate the effectiveness of DAN up to the state-of-the-art methods without extra-dataset on MOT16 and DukeMTMCT.\",\"PeriodicalId\":149041,\"journal\":{\"name\":\"Proceedings of the 2019 on International Conference on Multimedia Retrieval\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3323873.3325010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323873.3325010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

多目标跟踪(MOT)在监控检索和自动驾驶等领域有着广泛的应用。现有的方法主要是通过深度学习和手工优化二部图或网络流来提取特征。在本文中,我们提出了一种高效的端到端模型——深度关联网络(Deep Association Network, DAN)来学习基于图的训练数据,这些训练数据是由对象的时空交互构成的。DAN结合了卷积神经网络(CNN)、运动编码器(ME)和图神经网络(GNN)。cnn和Motion Encoders分别从边界框图像中提取外观特征,从位置提取运动特征,然后通过优化图结构将同一目标在帧间关联在一起。此外,我们提出了一种新的端到端深度关联网络训练策略。我们的实验结果表明,在没有额外数据集的情况下,DAN在MOT16和DukeMTMCT上的有效性达到了最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Association: End-to-end Graph-Based Learning for Multiple Object Tracking with Conv-Graph Neural Network
Multiple Object Tracking (MOT) has a wide range of applications in surveillance retrieval and autonomous driving. The majority of existing methods focus on extracting features by deep learning and hand-crafted optimizing bipartite graph or network flow. In this paper, we proposed an efficient end-to-end model, Deep Association Network (DAN), to learn the graph-based training data, which are constructed by spatial-temporal interaction of objects. DAN combines Convolutional Neural Network (CNN), Motion Encoder (ME) and Graph Neural Network (GNN). The CNNs and Motion Encoders extract appearance features from bounding box images and motion features from positions respectively, and then the GNN optimizes graph structure to associate the same object among frames together. In addition, we presented a novel end-to-end training strategy for Deep Association Network. Our experimental results demonstrate the effectiveness of DAN up to the state-of-the-art methods without extra-dataset on MOT16 and DukeMTMCT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信