将人工智能应用于行业4,000情况下

D. Schmalzried, Marco Hurst, Jonas Zander, Marcel Wentzien
{"title":"将人工智能应用于行业4,000情况下","authors":"D. Schmalzried, Marco Hurst, Jonas Zander, Marcel Wentzien","doi":"10.30844/im_23-3_28-33","DOIUrl":null,"url":null,"abstract":"Wegen der immer stärker fortschreitenden Durchdringung von KI in Unternehmen scheint ein Ordnungsrahmen für Begrifflichkeiten und Betrachtungsaspekte der Anwendung von Künstlicher Intelligenz im Industrie 4.0-Kontext wünschenswert. Methoden der Künstlichen Intelligenz lassen sich nach verschiedenen Aspekten strukturieren. Auch Anwendungen innerhalb von Industrie 4.0 können mithilfe des RAMI-Frameworks oder mithilfe des ISA95-Standards in Ebenen und Prozessgruppen eingeordnet werden. Allerdings fehlt eine Taxonomie, welche die Klassifikation der Anwendungsbereiche mit den durch Machine-Learning-Methoden verbesserten Prozessen in Beziehung setzt, sie verortet und bewertet. Ein solcher Ordnungsrahmen hilft, neue Prozesse und Lösungen einzuordnen und unterstützt im Finden passender Machine-Learning-Verfahren für konkrete Problemstellungen im Industrie-4.0-Kontext.","PeriodicalId":346026,"journal":{"name":"Industrie 4.0 Management","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ordnungsrahmen für Anwendungen der Künstlichen Intelligenz im Industrie-4.0-Kontext\",\"authors\":\"D. Schmalzried, Marco Hurst, Jonas Zander, Marcel Wentzien\",\"doi\":\"10.30844/im_23-3_28-33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wegen der immer stärker fortschreitenden Durchdringung von KI in Unternehmen scheint ein Ordnungsrahmen für Begrifflichkeiten und Betrachtungsaspekte der Anwendung von Künstlicher Intelligenz im Industrie 4.0-Kontext wünschenswert. Methoden der Künstlichen Intelligenz lassen sich nach verschiedenen Aspekten strukturieren. Auch Anwendungen innerhalb von Industrie 4.0 können mithilfe des RAMI-Frameworks oder mithilfe des ISA95-Standards in Ebenen und Prozessgruppen eingeordnet werden. Allerdings fehlt eine Taxonomie, welche die Klassifikation der Anwendungsbereiche mit den durch Machine-Learning-Methoden verbesserten Prozessen in Beziehung setzt, sie verortet und bewertet. Ein solcher Ordnungsrahmen hilft, neue Prozesse und Lösungen einzuordnen und unterstützt im Finden passender Machine-Learning-Verfahren für konkrete Problemstellungen im Industrie-4.0-Kontext.\",\"PeriodicalId\":346026,\"journal\":{\"name\":\"Industrie 4.0 Management\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrie 4.0 Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30844/im_23-3_28-33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrie 4.0 Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30844/im_23-3_28-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于人工智能系统在公司中的渗透不断加深,所以把人工智能应用在工业4,0的环境中进行概念和审查的框架显得更有必要。人工智能技术可以按照各个方面加以安排。在准备中4 0号区域的应用程序也可以使用法拉模式或艾莎95号标准在各级处理。但是缺乏可以将对相关学科的分类与机械学习改良过程联系起来、进行定位和评估的计算系统。这一秩序有助于制定新过程和解决方法,支持在工业4,0情形下找到合适的学习过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ordnungsrahmen für Anwendungen der Künstlichen Intelligenz im Industrie-4.0-Kontext
Wegen der immer stärker fortschreitenden Durchdringung von KI in Unternehmen scheint ein Ordnungsrahmen für Begrifflichkeiten und Betrachtungsaspekte der Anwendung von Künstlicher Intelligenz im Industrie 4.0-Kontext wünschenswert. Methoden der Künstlichen Intelligenz lassen sich nach verschiedenen Aspekten strukturieren. Auch Anwendungen innerhalb von Industrie 4.0 können mithilfe des RAMI-Frameworks oder mithilfe des ISA95-Standards in Ebenen und Prozessgruppen eingeordnet werden. Allerdings fehlt eine Taxonomie, welche die Klassifikation der Anwendungsbereiche mit den durch Machine-Learning-Methoden verbesserten Prozessen in Beziehung setzt, sie verortet und bewertet. Ein solcher Ordnungsrahmen hilft, neue Prozesse und Lösungen einzuordnen und unterstützt im Finden passender Machine-Learning-Verfahren für konkrete Problemstellungen im Industrie-4.0-Kontext.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信